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ABSTRACT

A Brayton Heat Exchanger Unit (BHXU), consisting of a recuperator, a heat
sink heat exchanger and a gas ducting system, was designed, fabricated, and
tested. The design was formulated to provide a high performance unit suitable
for use in a long-life Brayton-cycle powerplant.

A parametric analysis and design study was performed to establish the
opt imum component configurations to achieve low weight and size and high reli-
ability, while meeting the requirements of high effectiveness and low pressure
drop. Layout studies and detailed mechanical and structural design were per-
formed to obtain a flight-type packaging arrangement, including the close-
coupled integration of the BHXU with the Brayton Rotating Unit (BRU).

Fabrication development was undertaken and units were manufactured with
satisfactory structural integrity and leaktight containment. Evaluation test-
ing was conducted from which it is estimated that near-design performance can
be expected with the use of He-Xe as the working fluid.
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SECTION |

SUMMARY

AiResearch has designed a Brayton Heat Exchanger Unit (BHXU) consisting
of a gas-to-gas recuperator, a gas-to-liquid heat sink heat exchanger, and a
gas ducting system that interconnects with other Brayton components to form
the Brayton power conversion loop.

This BHXU is selected to operate in a power system with a rated output’
of 10 KW,- The design objective for the BHXU is an effectiveness of 0.95 for
both the recuperator and heat sink exchanger, a total gas fractional pressure
drop through the unit of 0.045, and an operating lifetime capability of 5
years in a space environment. The unit is designed to employ a gaseous hel-
ium=-xenon mixture -with a molecular weight of 83.8 as the primary working
fluid. The liquid coolant in the heat sink exchanger is Dow Corning 200 fluid
with a viscosity grade of 2.0 centistokes at 25°C.

A parameteric analysis and design study was conducted to establish the
most favorable heat exchanger configurations with respect to weight, size, and
reliability. Layout studies were performed involving component matching and
design tradeoffs to obtain an optimum integral unit. Utilizing these studies,
in combination with detailed mechanical and structural analyses, a compact,
flight-type arrangement was evolved for integration with the Brayton Rotatlng
Unit, the gas management system, and the Brayton heat source.

Fabrication development was undertaken with emphasis on leaktight con-
tainment. Three units were manufactured and they demonstrated satisfactory
structural integrity and containment.

Evaluation tests were conducted at reduced temperatures, using air as the
heat transfer medium, simulating the design operating conditions. The data
were analyzed to verify the design method and extended to estimate the oper-
ating performance of the unit with HeXe 83.8 as the working fluid. On this
basis, the unit is predicted to have the capability to operate at design con-
ditions with a recuperator effectiveness of 0.94!, a heat sink exchanger
effectiveness of 0.946, and a total gas fractional pressure drop of 0.039.

|
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SECTION 2

INTRODUCTION

NASA is currently engaged in the development of closed Brayton cycle sys-
tem technology for generation of electric power in space. The system presently
under consideration was chosen to investigate the means of producing power
in the range of 2 to 10 KWe for long durations of time. Such a system is

potentially applicable to supplying the power for a manned orbiting space
station or base. For extended missions, radioisotope energy sources have been
considered and were found to be suitable candidates to deliver the required
thermal powers.#

The concept selected for the Brayton power conversion equipment incor-
porates a single-shaft Brayton Rotating Unit (BRU), consisting of a turbine,
a compressor, and an alternator, coupled to a Brayton Heat Exchanger Unit
(BHXU). The BHXU consists of two heat exchangers, a gas-to-gas recuperator
and a gas-to-liquid heat sink exchanger, plus the gas system ducting that
connects the heat exchangers with the BRU. The recuperator transfers heat
from the low-pressure turbine exhaust gas to the high-pressure gas leaving the
compressor. The heat sink exchanger transfers heat from the low-pressure gas
leaving the recuperator to the liquid coolant in the radiator loop for ultimate
rejection as waste heat from the cycle.

The program described here includes the design, fabrication, and testing
of the BHXU prior to delivery of the unit to NASA for system integration and
testing. Cycle conditions on which the design of the BHXU is based are sum-
marized in Table |I. These design goals were established by NASA in conjunc-
tion with a systems analysis performed to identify operating conditions that
result in high overall conversion efficiency.

The final design of the BHXU is described in Section 3. Also included
in Section 3 is a summary of the design and off-design performance of the
unit under conditions specified by NASA. The thermal and structural design
of the BHXU, including parametric tradeoff studies that identify the optimum
heat exchanger configqurations, are described in Section 4. Fabrication is
discussed in Section 5. Testing and test results are presented in Section 6.
Detailed technical discussions of several aspects of the design are included
as appendixes.

#McKhann, G. G., "Preliminary Design of a Pu-238 Isotope Brayton Cycle Power
System for MORL," Vol I - Technical Summary, Report No. SM-48832 (NASA
CR-68809), Douglas Aircraft Co., Inc., September 1965.

AIRESEARCH MANUFACTURING COMPANY 2
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TABLE |

BHXU DESIGN CONDITIONS

Working fluid (gas) Xe~He mixture
Molecular weight = 83.8

Liquid coolant Dow Corning 200 fluid
(2 centistokes at 25°C)

Recuperator hot side

Gas flow rate, Ib/sec | .28
Inlet temperature, °R 1701
Inlet pressure, psia 24 . |

Recuperator cold side

Gas flow rate, Ib/sec | .267

Inlet temperature, °R 738

Inlet pressure, psia 43, |
Recuperator effectiveness 0.95

Heat sink heat exchanger

Gas exit temperature, °R 540
Effectiveness » 0.95
. . [hot side
Capacity-rate rat|o<;old side> 0.87
Maximum liquid pressure drop, psi 25
Overall BHXU gas pressure drop, percent 4.5

**Structurally, the recuperator hot side is designed to withstand 30.5 psié
and the cold side 56.0 psia.

AIRESEARCH MANUFACTURING COMPANY 3
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SECTICON 3

DESCRIPTION OF DESIGN AND PERFORMANCE OF
THE BRAYTON HEAT EXCHANGER UNIT (BHXU)

PACKAGED CONFIGURATION

The layout of the BHXU, selected from several layouts recommended at the
conclusion of the preliminary design study, is shown in Drawing SK 51365 which
appears at the end of this section. The BHXU final arrangement following de-
tail design is shown in Drawing 187370 at the end of this section. This
drawing also illustrates the overall packaging of the BHXU with the Brayton
Rotating Unit (BRU), which consists of the turbine, alternator, and compressor.
A complete assembly of the BHXU is shown in Figure 1.

The overall dimensions of the BHXU/BRU package are 22.5 by 49.5 by 56.0
in. Estimated weight of the BHXU is 440 I1b.

COMPONENT DESCRIPTION

The main part of the BHXU consists of a gas-to-gas recuperator and a gas-
to-liquid heat sink exchanger joined by a transition section that manifolds
and forms a rigid structure between the two components.

The recuperator design is summarized in Table 2. The recuperator is a
pure counterflow plate-fin unit (as shown in Figure 2), with crossflow tri-
angular end sections providing fluid access to the core. The counterflow
section uses rectangular offset fins, 0.153 in. high on the low-pressure side
and 0.125 in. high on the high-pressure side, in a single-sandwich arrangement
on each side. Each sandwich contains three flow-divider strips that run the
length of the core and prevent fluid crossflow. The sides of the flow passages
are closed by O.l-in. thick side strips. The construction material is 347
stainless steel throughout the heat exchanger. Nominal tube plate thickness
is 0.008 in., but this thickness is increased near the exchanger side plates
to provide a more nearly uniform distribution of thermal stresses during
transient conditions. Thus, the first, second, and third plates in from the
side plates are 0.020, 0.016; and 0.012 in. thick, respectively.

The heat sink heat exchanger design is summarized in Table 3. This
exchanger is an eight-pass, cross-counterflow, plate-fin unit, as shown in
Figure 3. The fin sandwiches are rectangular offset, 0.125 in. high on the
gas side and 0.05 in. high on the liquid side, in a single-sandwich arrange-
ment on each side. During operation of the heat exchanger, alternate liquid
_sandwiches are redundant (i.e., of the 32 liquid sandwiches, 16 are inactive
at any given time) so that, from a thermodynamic standpoint, the gas-side
passages are double-sandwich passages. To maintain separation of the two
liquid loops, turning between successive liquid passes is accomplished with
mitered fin turning sections rather than manifolds. These turning sections
are triangular sections of fin sandwich, of the same fin geometry as the rest
of the core (rectangular offset, 20 fins per in.), sized to give the same fluid
flow area in the turn as in the pass; i.e., the height of the turn triangle is

4
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Figure |. Brayton Heat Exchanger Unit
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TABLE 2

RECUPERATOR DESIGN SUMMARY

Counterflow Section

Flow length
Flow width
Hot-side fins
Height
Fins per inch
Thickness
Type
Cold-side fins
Height
Fins per inch
Thickness
Type
Nominal plate thickness
Number of sandwiches, each side
Stack height
Sfde plate thickness
Weight

Triangular End Sections

Height, hot end
Height, cold end
Ratio®*, hot end
Ratio, cold end
Fin configuration
Height
Fins per inch
Thickness
Type
Weight

19.7 in.
8.45 iq.

0.153 in.
16
0.004 in.

Offset rectangular

0.125 in.

16

0.004 in.

Offset rectangular
0.008 in.

66

(9.8 in.

0.06 in.

{78 1b

3.85 in.
1.3 in.
0.65
0.55

Same as counterflow section
10

0.004 in.

Plain rectangular

23 1b

*Ratio of'brojected width of hot-side passage to core width.

AIRESEARCH MANUFACTURING COMPANY

Los Angeles, Califorma
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TABLE 3

HEAT SINK EXCHANGER DESIGN SUMMARY

Gas flow length

Liquid flow length (per pass)

Number of liquid passes
Gas-side fins

Height

Fins per inch

Thickness

Type
Liquid-side fins

Height
Fins per inch
Thickness
Type
Nomfnal plate thickness
Number of gas sandwiches
Number of liquid sandwiches
Stack height
Side plate thickness
Weight (dry)

Weight (wet)

16.15 in.
20.0 in.
8

0.125 in.
16

0.004 in.

0ffset rectangular

Q.OS in.
20
0.002 in.

Offset rectangular

0.010 in.
31

32

6.4 in.
0.06 in.
160 1b
174 1b

AIRESEARCH MANUFACTURING COMPANY
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Figure 3, Eight-Pass, Cross-Counterflow, Plate-Fin Heat
Exchanger with Two Liquid Loops
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equal to the width of the liquid pass. Successive liquid passes within each
sandwich are separated by 0.05 in. thick side strips. Header bars and side
strips at the external faces of the core are 0.1 in. thick. The construction
material is 347 stainless steel throughout the heat exchanger. As in the
recuperator, tube plate thickness is increased in the regions adjacent to the
side plates. Thus, a 0.016-in. thickness is used for the four plates nearest
each side, whereas the remaining plates are 0.010 in. thick.

Between recuperator and heat sink exchanger is a short transition section
that turns and distributes the gas flow from the recuperator low-pressure out-
let into the heat sink exchanger. The transition section contains five turning
vanes to ensure uniform flow at the heat sink exchanger inlet.

Gas manifolids are provided to collect and distribute all fluid flow
through the recuperator and heat sink heat exchanger. Manifolds for the two
heat exchangers are shown on Drawing 187370. These manifolds are shaped to
obtain uniform flow distribution in the heat exchanger cores. '~ In the case of
the recuperator low-pressure inlet, the ideal manifold shape would involve a
gas flow area that tapers in the gas-flow direction from maximum at the inlet
to 10 percent of maximum at the far end. This taper is such that the small
amount of friction pressure loss would be offset by momentum recovery, result-
ing in a static pressure profile at the recuperator inlet that is approximately
constant and matches the (constant) static pressure profile in the transition
section at the recuperator outlet. In actual practice, due to fabrication
limitations, the low-pressure inlet manifold is tapered for only part of its
length, resulting in a non-ideal static profile that results in some flow mal-
distribution. At the heat sink exchanger outlet, it is not possible to obtain
uniform static pressure, since in this manifold both flow friction and increas-
ing momentum tend to decrease static pressure in the direction of gas flow.
This outlet manifold is sized such that the total static pressure loss along
the manifold is approximately 10 percent of the pressure drop in the heat sink
exchanger core. Inlet and outlet manifolds on the recuperator high-pressure
side are sized such that the pressure rise profile in the inlet manifold (due
to momentum recovery) matches the loss profile in the outlet manifold, result-
ing in equal static pressure differences for all flow paths through the heat
exchanger. ‘

Inlet and outlet liquid manifolds are provided for the two independént
liquid circuits in the heat sink heat exchanger. These manifolds are sized
for negligible liquid pressure drop.

Ducts for the gaseous working fluid connect the recuperator and heat sink
heat exchanger manifolds to the BRU, the heat source, and the gas management
system. (A section of ducting between the compressor outlet and the recuperator
inlet is interchangeable with a section provided by NASA that contains an
injection and vent valve which connects to the gas management system.) The
duct from the recuperator to the turbine exhaust is Hastelloy X. All other
ducts are 347 staihless steel. The duct diameters are as follows:

Compressor outlet duct - 3.5 in.

Recuperator high pressure outlet duct - 4.5 in.

10
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Turbine outlet duct - 6 in.

Compressor inlet duct - 4 in,, tapered to 3.5 in. at compressor
inlet

Bellows are provided in the BHXU to accommodate differential thermal growth
of the BRU and BHXU with minimum thermal loads. Bellows are located between
the recuperator and the turbine, between the compressor and heat sink exchanger,
and between the compressor and recuperator. The high-temperature bellows
between turbine and recuperator is Hastelloy X, while the others are 347 stain-
less steel.

A lightweight mounting system is incorporated to support the BHXU and to
minimize the growth differentials between the BHXU and BRU. The primary mounts
support the BHXU at six locations, which are all positioned in one plane. Two
are located on the transition section (between recuperator and heat sink
exchanger), two on the recuperator high pressure outlet manifold, and two on
the heat sink heat exchanger gas outlet manifold. Additional mounts on the
ducts connecting to the BRU turbine outlet and compressor inlet are provided
to react unbalanced pressure forces arising from the use of bellows.

Instruments are instailed throughout the BHXU, as shown in Drawing 187370,
Sheet 2, to monitor temperature and pressure during operation of the unit.

Flanges are attached to all ducts to form weldable connections with.the
mating equipment. The flanges used are the top and center ones of the three
types shown on Drawing SK 5!365. The flange shown in the center view is used
on the duct sections immediately adjacent to the turbine and compressor. The
flange in the top view is used for all other connections of the ducts to
the manifolds, heat source, gas management system, and BRU. These flanges
provide for simple and accessible connections for assembly and disassembly of
components with reweldable characteristics.

Gas flow to the BHXU enters the recuperator low-pressure side from the
turbine exhaust. This flow passes through the recuperator to the heat sink
heat exchanger and is then ducted to the compressor inlet. The compressor dis-
charge gas flows through the recuperator high-pressure side and exits to the
heat source. Liquid coolant in the radiator loop flows from the radiator
through one of the two independent liquid circuits in the heat sink heat
exchanger and then back to the radiator.

PERFORMANCE

The performance of each of the two heat exchangers in the BHXU, based on
the results of the performance and acceptance tests, has been estimated for
the design and off-design conditions of temperature and flow listed in Table 4.
The resultant performance map, representing the final performance estimate for
the BHXU, is given in Table 5. A breakdown of the gas pressure drops in the
heat exchangers, manifolds, and ducts, based on design calculations, is given
in Table 6.

AIRESEARCH MANUFACTURING COMPANY
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TABLE 4

DESIGN AND OFF-DESIGN CONDITIONS

0ff-design
Case | Case Case Case Case Case
Condition Design I II III IV v VI
Hot Side
Gas flow rate, |.28 0.38 | 0.55 | 0.76 1.0 1.5 2.5
Ib/sec .
Recuperator inlet 1701 1709 1705 1701 {701 1701 1701
temperature, °R
Recuperator inlet 24. | 6.86 9.95 13.9 18.1 27.2 45.3
pressure, psia
Cold Side
Recuperator inlet 738 740 739 738 738 738 738
temperature, °R
Recuperator inlet 43.1 12.8 [8.5 25.6 33.7 50.5 84.25

pressure, psia

TABLE 5

DESIGN AND OFF-DESIGN PERFORMANCE

|
Gas i
Heat Sink Pressure | |
Recuperator - Exchanger Drop, Liquid Pressure
Condition | Effectiveness® |Effectiveness#* |Percent Drop*¥, psi
Design 0.941 0.946 5.9 4.5
off-design
I 0.955 0.965 7.5 1.0
I1 0.955 0.965 6.3 1.5
ITI 0.95 _ 0.96 5.3 2.3
Iv 0.945 0.955 4.8 3.2
v 0.935 0.94 . 3.9 5.3
VI 0.92 0.92 3.0 10.1

#Based on a cold-side flow rate equal to 99 percent of the hot-side flow.
##Based on a 9gas capacity rate equal to 87 percent. of the liquid capacity rate.

1 AIRESEARCH MANUFACTURING COMPANY
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TABLE 6

BHXU PRESSURE DROPS

Pressure Drop, percent

Recuperator | .86
Recuperator end sections 0.77
Heat sink exchanger 0.56
Manifolds

Cold inlet 0.095

Cold outlet 0.068

Hot inlet 0.198

Hot outlet 0.019
Total manifolds . 0.38
Ducts

Hot inlet 0.16

Hot outlet 0.16

Cold inlet 0.13

Cold outliet 0.09
Total ducts 0.54
Total BHXU AN

AIRESEARCH MANUFACTURING COMPANY
Los Angeles, Calfornia




(C=a@)
os62
AO|ADDBAS RSI/DIDHLO SSTINN 1IS210N
- . ANIOT MNOISMNweKE
= = Sl 1 = - T NASDES TEON SMNOISHNE- G B0A arETTe TS e S0 TOWa amWa
- - = TR RN DAY RG KTNO SESOdENaG D_ONIAT/=ND[A /O L
3 e v g
JS=E1S IS ] 01z - LE) SoMi AEILTDIAN SESORA BEOLTEINDL @ i . oz) — oo
sesl weimmaene | me .. 4d SMHIL QBLeD'QA™ SATL TANSSW|AA | .
-1 AMNETET MNOILT TNRWOYALS™ T2 . - (h=2a)
| 208 o ame | oza
00wl | uomomn oM
= 3 1 (S imvarnoalnwoD
narie i, TS ALy T S s 2R)_ronoms Pt SR )
W SENGINON ROV | . ™~ ™~
PO ;DR VA N s s Il L BOK ) : - _Dies (SB=) MO INS
RV 20 _isn ssv—] | 1 \ ~
) R
— MOUIOMINS QWY WG Yoo R _IE_ o O o A imreos _ ¢ ,
1 I 1 [ 1 NQILTSNNOY "SAS AN B oL - oo - ——
SO ATANT TR TAAONS L
/4 A= o X
i 4._ -
EDTrAa WAL _ ‘ C
S RN ISR NI N _ \
“Iose e T<E = TN Y Y \
PR R T OISR 2L - / /V _ -
RO RO T | - //\X// _ _ .
/
oozt | j RN A Lion T ' : .
) NOIS TR o=a .
SENGD QWO BN _ _u - TAMNIG 1NN .
[
SENod QWD ALY ™ [ (OoLee? W~ <IirEmova) _ H (IQ O q/ T
. . | 1 (O=E) 1O S O3 NOL YRR | Qoo (T2 Q5 | AT
TS S _ H ' =oR0 ANTEH ' I - MOV SO KE
[ - OS'S | ! WO 3y .
- i | |
Eo _ , \ _
! | o ode) _ ;
“ o= CrrBE > S BA e
LA —L 0o D T=mA p — _ . = .
) _ ©6 D wAA ¥ |/4rA Yy TS HTXKE 1 Sin IS e = Y ' SLO 1\
4& f—-- -— HO STCILTEMNMNOT SSwa DALY B =
' o ey N 3+ .
P _lUmWr» LAy ESTSROASE T W
H ) - . N .-
g l | A\ \ N _ 06D OBR v .
\.\ H.u_II: ; NH.,‘L 1 A_ﬂ = - O D OBA b
\\ ! R |
A TErves . . _ _ L [ 1 O D O3a v
(G AL STNOIL 20D RO D o == | F=f | ==
T2 SO0V MONS - —
SN =RERML BAORDY =R J ’ |
v _ i I _
K ' ! !
i _
" |
. . ¢
| ! _ \
THONIDTBNTNOD \ [ ' H oLt s i
1oR RGN WL i i ; _ Luzien i
TR DAL ! ! [STACRY !
ISR __ .
_ _ ol
! i : k
] . i :
1 1 b — s o
— _ | =1Z3 1 ﬂ,wL‘uu ‘ _| =
. ! 1
m + A = “ " By { | '
Ll EESRE Sy
— =1 == | m |
i
O™ DAL - a2 : L / ﬁ(. - H 7” r—t ‘ ' h
ShRYaSN=A , ,W BEILOON —— o s o | ) ! — / _ , .
5 : : X i |
\ . | AN
_, ! / / \ | | ) 1 . 4
B . - - /
| \ A : % / !
| I : . _ / . :
ﬁ O | | | I
: . : | - -
w — et | \AI|. - : — - o J = o 7 L5 mmoreeHows 1SvEe DS 1o Sn ¢
ft A I | y . [O NOILD WO STEL DALY
| f o " !
L S S J Wn....ﬂ.|| =
(M)
e - ZESER
. —_— = .
AN oo2s
. . BOiSErws MO AL S
osez = NOI LA MNTNROBLS ™ oL ESarTRa 7 /
ST TSGR ANER M /
HATNIS v / .
— = Do s Sasd “
= =@ anamsa ‘
A
O+
N —rtEEEY o6 ; Y
\Ir'/ A \
. &/ B \
M —wJuE\.ll“ &= - / nu«w
e == .. s e v—v— v 8 Bl N .
. &y o illn..m.v.m Y r— Peesaae—1 S v R T SIRT o Ta 7_ . .
ez [Ra] ™ ®  A e Apacte - g - " b TQLNDNTR <m
aonaw | uw | gl-snl — P A e e & FDC@Q@M ! H Woa=s N—Z k l—-:ool—o&
. 0. " bt
: == 104 ]
TOBVOOS LVSH
- " ©d




Page intentionally left blank



Page intentionally left blank



WSSy
M /9

PRECEDING PAGESEtassf NOT FILMED

SECTION 4

DESIGN STUDY

THERMAL DESIGN

Heat Transfer Data

Experimental heat transfer and friction loss data were used in the analysis
of all heat exchanger types considered. Direct test data are available for
the fin surfaces considered for the recuperator and the heat sink exchanger
hot-side passage, whereas the performance of the fin surface used in the heat
sink exchanger cold-side passage (20 fins per in., 0.05 in. high) was estimated
from test data on a different. fin set (20 fins per in., O.1 in. high). The
UA and pressure drop margins used for the plate-fin cores were consistent with
the results of previous testing on the NASA solar Brayton cycle (argon-to-argon)
recuperator. Recent data from Stanford on the 0.05 in. high sandwich indicate
that actual heat transfer coefficients are between 20 and 25 percent less than
what were estimated for this fin set during the design analysis. Since the
ratio of liquid-side to gas-slde conductance in the heat sink exchanger is
quite high, this amount of change in the liquid-side coefficient caused a
reduction of only 6 percent in overall UA, which was well within the original
allotment of UA margin and thus did not require redesign of this exchanger.
The data on the 0.05 in. high fins were all obtained from tests using air as
the heat transfer fluid, however, and application of these data to liquid flow
introduced an additional uncertainty in the design. Final UA margins incor-
porated in the designs for the two heat exchangers were 20 percent for the
recuperator and 10 percent for the heat sink exchanger.

One of the candidate core geometries for the gas-to-liquid heat exchanger
was the cross-counterflow tube-fin matrix, utilizing strip fins and a ring-
dimpled tubing design. This matrix is the one considered by AiResearch for
the NASA solar Brayton cycle heat sink heat exchanger (argon-to-liquid
exchanger). Prior to the heat sink exchanger program, data did not exist for
flow outside of this particular type of strip-finned matrix, nor was the small
amount of data on liquid flow inside dimpled tubing sufficient for design
purposes. During the design of the argon-to-liquid heat exchanger, AiResearch
utilized f and j data, experimentally measured during a previous program, for
flow across a disc-finned tubular matrix of similar geometry to the strip-
finned matrix (i.e., same tube spacing, tube diameter, and number of fins per
inch) and experimental data on gas flow inside dimpled tubes. Margins required
on UA and pressure drop are somewhat higher than the margins required for
plate~fin cores,

The following section of this report describes a parametric study of heat
exchanger designs, utilizing AiResearch computer programs that are described
in Appendix A. The heat exchanger weights generated during this phase of the

AIRESEARCH MANUFACTURING COMPANY
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program were of a preliminary nature and substantially lower than final design
weights. Specifically, final design heat exchanger sizes increased for two
reasons. During final design, a new set of fluid properties was used for the
xenon/helium mixture, based on data from the University of Iowa, with viscosity
and thermal conductivity values predicted using the Chapman-Enskog theory.

Use of these data caused a reduction of about 7 percent in estimated gas film
coefficients (due primarily to a higher Prandtl number at elevated temperatures)
and a consequent increase in heat exchanger sizes. In addition, during the
detail design study the UA margins on heat exchanger performance were increased
by 10 percent while gas pressure drops were decreased by about |0 percent.

Parametric Design Study

I. Recuperator

a. Configuration

During a previous study of recuperator designs for the NASA Solar Brayton
Cycle System (Contract 3-2793), a number of heat exchanger configurations were
studied extensively to determine minimum weight and size design solutions.,

The configurations studied were the following:

(a) Multipass cross-counterflow plate-fin
(b) Pure counterflow plate-fin

(c) Multipass cross-counterflow tubular
(d) Pure counterflow tubular

Applying the results of that study and the present one, several conclusions
regarding the optimum heat exchanger configuration can be made. First, the

pure counterflow tubular matrix can be eliminated from consideration as both
one of the heaviest and one of the largest of the possible solutions, This
occurs because of the relatively poor heat transfer coefficients obtained with
flow parallel to tube bundles and because of the inherent low packing density

of heat transfer surface in tubular as opposed to plate-fin matrixes. Secondly,
of the two cross-counterflow units, plate-fin and tubular, the plate-fin matrix
will generally result in heat exchanger configurations which are both heavier.
and more difficult to package than the tubular cores. The difficulty in pack-
aging occurs because of the large no-flow dimension required to meet pressure
drop limitations on both the multipassing and single-pass sides of the exchanger.
The large no-flow requirement exists for the cross-counterflow tubular unit
also, although it has been found that design solutions are available for this
configuration through the use of folded or concentric ring packaging. Finally,
comparing the pure counterfiow plate-fin matrix with the cross-counterflow
tubular matrix, the plate-fin unit will be more compact and simpler to package,

1 AIRESEARCH MANUFACTURING COMPANY
Los Angeles, Califerma




and may also result in the minimum-weight solution. From preliminary packaging
studies it was found to be completely impossible to fit a tubular unit within
the BHXU envelope provided by the problem statement (tubular units were three
times the size of plate-fin units). For these reasons, the pure counterflow
plate-fin heat exchanger geometry is considered exclusively for the gas-to-gas
recuperator.

The following parametric study is based on the use of the pure counter-
flow plate-fin exchanger, with triangular, cross-flow end sections for
introducing and removing the fluids from the core (see Figure 4).

b. Fin Set Selection

To determine the geometry for minimum recuperator weight, a series of
recuperator designs was calculated using several different fin sandwich
configurations. Single sandwich construction on each side was used in all
cases. The designs are based on the use of 8-mil plates and 347 stainless
as the material of construction throughout the core. The geometries of the
fin séts used are given in Table 7. The fin efficiency was relatively high
for all designs studied (87 percent was the minimum), so that the use of fins
thicker than four mils was not considered. All fins used are geometries for
which experimental curves have been obtained of friction factor, f, and Colburn
modulus, j, as functions of Reynolds number.

TABLE 7

FIN SANDWICH GEOMETRY

Fin Number of Fin Plate Offset Fin
Number Fins per Inch Type Spacing, in. Length, in. Thickness, in.

I 20 Rect. 0.075 1/10 0.004

2 20 Rect, 0.100 /8 0.004

3 16 Rect. 0.125 1/8 0.004

4 16 Rect. 0.153 /7 0.004

5 2 Rect. 0.178 10.178 0.004

Figure 5 shows recuperator weight (counterflow section only) as a function
of gas pressure drop for seven different combinations of the fin sets of
Table 7. The curves were generated with the aid of the AiResearch counter-
flow plate-fin design program and include the effect of axial conduction of
heat in the core. The effect of axial conduction on heat transfer matrix
selection is to penalize the more compact surfaces in favor of the more widely
spaced arrays, because, for a given gas pressure drop, the wider spacings

19
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Figure 4. Counterflow, Plate-Fin Recuperator
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RECUPERATOR WEIGHT (COUNTERFLOW SECTION ONLY), LB

: E‘&"F'EE%‘f‘\'/‘éN‘é"s"s """ 5 i
STAINLESS STEEL CONSTRUCTIONE::
280
260 H
240
: COLD FIN NUMBER
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220 e
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180 .
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TOTAL PRESSURE DROP ( COUNTERFLOW SECTION ONLY), PERCENT A-25513

Figure 5. Variation of Recuperator Weight with Pressure Drop
and Fin Sandwich Geometry
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result in a larger gas flow length and thus a reduced temperature gradient for
axial conduction. Over the pressure drop range shown, for example, the mini-
mum weight solution would have been fin set 2-2 and the second best would have
been fin set 3-2 if the effect of axial conduction had not been included in the
calculations. Figure 5 also shows the trend toward less compact surfaces for
minimum weight as the pressure drop (and thus the gas flow length) decreases.

Based on Figure 5, it was decided to include fin sets 3-2, 4=3, and 4-2
(hot fin number-cold fin number) in a further analysis including the triang-
ular cross-flow end section design. A series of triangular end section
designs was calculated for the cores corresponding to each of these fin sets,
using the AiResearch end section design program. The parameters varied in
these calculations were end section height, H, and ratio, X/Z, as defined in
Figure 6 below. (For this parametric study, X/Z = Y/Z in all cases. )

YCROSS-FLOW END SECTIONS — : ggw
s

/ IN
/
‘\}( HOT

HOT
GAS .
m\é
_1_ COUNTERFLOW
CORE

f— N ———]

R
X
Y

COLD'/

GAS .  HEIGHT = H ‘ o —=]
ouT RATIO = X/Z (cold end)
= Y/Z (hot end)

GAS
ouT

A-25547

Figure 6. Recuperator Schematic

The end section fins used are plain rectangular, 10 fins per inch, in all
cases. Ten fins per inch has been determined to be the minimum. allowable based
on fabrication limitations.

The end sections calculated in this portion of the study do not take into
account the effect of end section design on core flow distribution and are
simply an initial estimate of the tradeoff between weight and pressure drop
for this component. The redesign of the end sections to ensure uniform core
flow is described in a later section of this report.

1t was determined that, with core fin sets 3-2 and 4-3, the optimum value

of the end section ratio is approximately 0.7 for all cases, but that the
pressure drop tradeoffs are such as to result in a relatively broad minimum
weight region, so that values of the ratio from about 0.6 to 0.8 represent
reasonable design solutions. These conclusions are illustrated in Figure 7,
where the total of end section pressure drops, calculated as percentages of
the respective gas pressure levels, is plotted as a function of end section
ratio for heights of 2, 3, and 4 in. For core fin set 4-2, the lowerratio
of cold-side flow area (0.100-in. passages) to hot-side flow area (0.153-in.
passages) results in lower optimum ratios of about 0.6.
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Using a value of 0.7 for the end section ratios (0.6 for fin set 4-2),
curves of total recuperator weight, including counterflow core and crossflow
end sections, are now plotted as a function of combined core and end section
pressure loss for each of several core pressure drops. The curves correspond-
ing to core fin set 4-3 are shown in Figure 8. By drawing a curve tangent to
each of the curves for fixed core pressure drop, the locus of minimum weight
recuperator designs is achieved; i.e., each point on the dashed line in
Figure 8 represents a recuperator with an optimized core/end section pressure
drop split for the value of total pressure drop given by the abscissa.

Similar curves for the recuperators with core fin sets 4-2 and 3-2 are
shown in Figures 9 and 10. 1In these figures (as in the preceding figure),
the same end section height is assumed at each end of the recuperator. During
final recuperator sizing, different heights and ratios are used at the opposite
ends of the recuperator in order to match end section pressure drops and thus
obtain improved flow distribution. As a result of this, the pressure drop
split will vary somewhat from the "optimum" indicated by Figures 8, 9,and 10.
A second modification may occur due to a change in the ratio of stack height
to flow width for the recuperator core. The core designs assumed in Figures 8,
9 , and 10 have height-to-width ratios of 2 to |. As relative stack height is
increased, the end section pressure drop decreases for a given end section
height, resulting in a lower optimum value of end section pressure loss as
well as a lower optimum end section height. It is convenient to adjust
recuperator stack height to obtain a dimensional match between recuperator
low pressure outlet face and the heat sink heat exchanger inlet face, as
described in a later section.

Despite these two modifications which will occur during final sizing,
the curves of Figures 8, 9, and 10 are useful for comparing recuperator
designs and for examining the weight and pressure drop tradeoffs between
the two heat exchangers in the BHXU system. A comparison of the three fin
sets indicates that fin set 4-3 results in the lightest recuperators for the
pressure drop range of |.0 to 3.0 percent. There was found to be negligible
variance in gas flow areas among the fin sets, and thus no relative advantages
in terms of face area matching with the heat sink heat exchanger. Based on
these factors, fin set 4-3 was selected for the remaining portions of the
parametric study.

c. Fin Conductivity

The effect of fin conductivity on recuperator weight is shown in Figure |1.
With a thermal conductivity in the range of 10 to [2 Btu/hr-ft-°F for the
recuperator operating temperature level, the 347 stainless used for the fins
is seen to be about optimum. This optimum occurs as a result of the tradeoff
between fin efficiency and heat exchanger axial conduction, both of which
increase with increasing fin conductivity.
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RECUPERATOR WEIGHT (COUNTERFLOW SECTION ONLY), ‘LB
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Figure |l. Variation of Recuperator Weight
With Fin Conductivity
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2, Heat Sink Heat Exchanger

a. Configuration

The following heat exchanger types have been considered as possibilities
for the heat sink exchanger:

(a) Cross-counterflow tube-fin
(b) Counterflow plate~fin

(c) Cross-counterflow plate-fin
(d) Cross-counterflow tubular

Each of these configurations was analyzed to obtain initial comparisons of
size and weight. These comparisons are made in the next subsection of this
report, where the optimum gas pressure drop split between recuperator and heat
sink exchanger and the resultant combined BHXU weight are obtained for each
configuration. The following paragraphs discuss the heat exchanger geometry
and flow configuration for each of the four exchanger types.

The cross-counterflow tube-fin heat exchanger utilizes serpentine tubes
and strip fins that connect the tubes in each tube row (see Figure 12). The
advantage of using strip fins, as opposed to disc fins, is that each of the
two separate liquid loops in the core uses the same fin surface as gas-side
heat transfer area, eliminating the duplication of area which would be required
if separate disc fins were used on each tube. The designs considered utilize
two tube rows per pass, with the operating and redundant loops arranged in one
to two possible ways, as sketched in Figure 13. The sketch shows a single
liquid pass in the heat exchanger core in each case, with the liquid flow
direction being into the paper. 1In configuration (a) the active and redundant
tubes are alternated in each tube row, while in configuration (b) alternate
tube rows are active and redundant. Configuration (a) will have slightly
better heat transfer performance for two reasons: (|) the gas-side heat trans-
fer area is interrupted twice as frequently in the gas flow direction, result-
ing in a higher film coefficient and (2) the operating tube is centered in the
fin, resulting in a slightly higher fin efficiency than obtained with the
offset active tube positions of configuration (b). Neither of these considera-
tions is strong enough to rule out the use of configuration (b), which has the
advantage of requiring simpler manifolding arrangements than configuration (a).

Some of the features of the cross-counterflow tube-fin exchanger that
make it a lightweight design candidate for this application are the following;

(a) The heat transfer area is interrupted in the gas flow direction,
which essentially eliminates axial conduction as a problem in this
core.

(b) Dual use is made of the metal in the core, since all of the core
metal serves as gas-side heat transfer area and is effective during
operation of either of the two liquid loops.
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The plate-fin matrices are reliable and easy to fabricate but tend to be
heavier than the tube-fin matrix. The high weight of plate-fin cores is attrib-
utable to (1) the high proportion of total heat transfer area provided by the
plates, which must be relatively thick to meet fabrication requirements (6 to
8 mils is standard), (2) a relatively unfavorable geometry for achieving an
optimum conductance ratio in a gas-to-liquid application, and (3) the degrada-
tion in heat transfer performance due to axial conduction of heat in the core.
In the plate-fin designs, as in the tube-fin core, it is possible to integrate
both liquid loops (active and redundant) into a single core and thus make dual
use of the gas-side heat transfer area. This is done by alternating liquid
passages in the core; i.e., the order of sandwiches in the heat exchanger is
as follows: gas, liquid |, gas, liquid 2, gas, liquid I, etc.

Manifold arrangements for the pure counterflow plate-fin heat exchanger
are depicted in Figure 4. The liquid loops enter through rectangular end
sections, allowing the gas to make a straight pass into the core. The end
sections required for introducing the liquids into the counterflow core repre-
sent a major disadvantage of the counterflow configuration, since the end sec-
tions both add substantial weight to the heat exchanger and make it virtually
impossible to obtain constant liquid pressure across the flow width of the
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exchanger. The latter effect occurs because the reduced liquid flow area in
the cross-flow portion of the ends ensures an end section pressure loss which
is comparable to the counterflow core loss and a resulting pressure gradient
.along the entrance face of the core. The resultant tendency for cross=flow in
the core is prevented by the use of flow dividers, which add further to the
weight of the exchanger.

The cross-counterflow plate-fin heat exchanger core is shown in Figure 5.
This exchanger is easy to manifold though somewhat more difficult to construct
than the counterflow unit, due to the turning sections required between each
pass.

The cross-counterflow tubular heat exchanger could be one of the simplest
types to construct. The use of serpentine tubes for this design would result
in a minimum number of braze joints and thus inherent high reliability. However,
the plain tubular unit is the heaviest core type for two reasons: (l|) there
is a large liquid inventory weight, amounting to about 42 percent of the dry
weight in the designs studied, and (2) since the active and inactive tubes are
not connected in any way, a separate core is required for each of the two
liquid loops. In addition, the low packing density of heat transfer area in
the tubular core has been found to result in high heat exchanger volume and
difficult problems in packaging and matching to the recuperator. The use of
serpentine tubing, because of minimum allowable tube bend radii, would require
wide spacing of the tubes and a further decrease in heat transfer area per
unit volume, to the point where the heat exchanger becomes very bulky.

b. Core Optimization

(1) Tube-Fin Cross-Counterflow.Core

The effects of several parameters on the size and weight of the tube-fin
cross-counterflow heat exchanger were studied parametrically. Figure 16 shows
the variation of heat exchanger face area and heat exchanger weight with number
of fins per inch. These curves are based on the following assumptions:

(1) A single fin strip per tube row, with a strip fin width of 0.300 in.
and a spacing between tubes in a tube row of 0.340 in.

(2) A tube 0D of 0.15 in. and a tube wall of 0.008 in. (ss)
(3) Ring-dimpled tubing

(4) Copper fins, 0.004 in. thick

(5) Performance as specified in the figure

Minimum heat exchanger weight is seen to occur at approximately 15 fins per
inch. Using this same core geometry and |5 fins per inch, the effect of
liquid pressure drop on core size and weight is illustrated in Figure 17.
Weight was found to increase sharply as pressure drop was decreased below

10 psi, because the reduced liquid Reynolds numbers obtainable at the lower
pressure drops dropped the flow into a region where the tube dimples were not
effective in increasing the liquid film coefficient; i.e., essentially laminar
flow prevailed. ’
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The effect of tube diameter on heat exchanger weight is shown in Figure 18
for tube-fin matrix number SPT4. The SPT4 matrix is of interest because it is
the matrix used in the solar Brayton cycle heat sink heat exchanger design
AiResearch performed for NASA. It has the following geometry:

(t) 30 fins per inch

(2) Fin width = 2.0 in. x (tube 0D)
(3) Tube spacing (transverse to gas flow) = 2.35 in. x (tube 0D)
(4) Fin thickness = 0.004 in. (copper)

(5) Ring-dimpled tubing

It may be noted that heat exchanger weight decreases with decreasing tube
diameter to 0.125 in. This is consistent with previous AiResearch experience
on this type of matrix, which has indicated generally improved performance
with smaller tubes. The SPT4 matrix has a higher than optimum number of fins
per inch, although the weight penalty is not as great as that shown in

Figure 16 if the higher liquid pressure drop of 25 psi is used. The 25-psi
pressure drop results in a higher liquid film coefficient and a higher optimum
ratio of outside-to-inside heat transfer area, thus an optimum number of fins
somewhat above |5 per in.

(2) Plate-Fin Cross-Counterflow Core

A number of fin sandwich geometries (fin height, fin thickness, and number
of fins per inch) were studied -to obtain a minimum-weight core design. A
significant part of the optimization procedure involves calculating the effect
on performance due to axial conduction of heat in the heat exchanger core.
This calculation is accomplished with AiResearch Computer Program No. H2300
(see Appendix A), a nodal point analysis program that calculates the transient
and steady-state performance of cross-counterflow plate-fin heat exchangers.
To determine the effect of axial conduction, the program is run first with
an option in which the conduction heat transfer between metal nodes is dis-
regarded in the calculation, and then with the option in which conduction is
included. The results from this program are then used to adjust the heat
exchanger designs obtained from HO120, the plate-fin design program.

Results of the analysis are shown in Table 8.

In all cases, the cold-side (liquid) fin sandwich is 20 fins per in.,
0.050 in. high, 0.0020 in. thick, and the hot-side fin thickness is 0,004 in.
Computer results were obtained for axial conduction in Cases 2 and 3 cores, and
the axial conduction effect was estimated from these results for Cases | and 4 .
On the basis of Table 8, the Core 2 fin set was chosen for the plate-fin cross-
counterflow heat sink exchanger.

A brief study was made of the effect on heat exchanger size of the number
of liquid-side passes. The selected number of passes is eight, for which the
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COMPARISON OF FIN SETS FOR THE HEAT

TABLE 8

SINK EXCHANGER

Hot-side Fin Sandwich Geometry Core Wet Weight, 1b
' Fins Gas Flow Axial Axial
Fin Height, per Length, Conduction Conduction
Case in. in. in. Disregarded Included
I 0.153 16 20 98 00
2 0.125 16 16 90 97
3 0.100 20 I 81 | 04
4 . 0.100 16 24 94 109

UA requirement is !4 percent above the UA required for a pure counterflow con-
figuration. The reduction in required UA obtained by increasing the number of
passes above eight does not justify the added complexity of the design.

3. - Design Point Selection

a. General

Selection of the design geometries for the two heat exchangers in the
BHXU requires consideration of the face area match between low pressure recu-
perator outlet and heat exchanger intet in addition to the reliability and
weights of the individual units. Reliability, which is considered to be the
most important design criterion for this program, enters the design process
through its effect on heat exchanger matrix type selection, e.g., plate-fin
vs tubular. For a given heat exchanger type, selection of the individual core
parameters and the pressure drop split between recuperator and heat sink
exchanger are based on (1) minimum BHXU weight and (2) the face area match
between the two exchangers, as required to eliminate intermediate ducting
pressure losses. In addition, each BHXU configuration must be checked to
make sure it can fit within the envelope specified by the problem statement
and further evaluated on the basis of the resultant configuration of the gas
ducting.

b. Pressure Drop Split

The method by which minimum weight and the recuperator/heat sink match
are obtained is shown for the candidate heat sink heat exchanger types by the
curves presented in this section. The recuperator assumed in all cases js the
counterflow plate-fin unit with fin set 4-3 (0.153-in. fins on hot side,

-
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0.125-in. fins on cold side). Total pressure drop for the two exchangers was
set at 3.5 percent, exclusive of manifold losses, leaving | percent available
for manifolds and ducting external to the exchangers. '

Figure 19 shows heat exchanger weights and frontal areas for the
recuperator and the tube-fin (SPT4 matrix) heat sink exchanger. The weights
include heat exchanger cores, end sections, and side plates, but do not.include
manifolds, ducting, and associated structure. Since total pressure drop is
held constant, increasing recuperator pressure drop causes a decrease in heat
sink heat exchanger pressure drop and a resultant increase in heat sink heat
exchanger weight. The combination of increasing heat sink exchanger weight
and decreasing recuperator weight results in a minimum combined weight at a
pressure drop split of 3.0 percent for the recuperator and 0.5 percent for the
heat sink exchanger. As may be seen from the face area curves, at this pres-
sure drop split the heat sink exchanger frontal area is 160 sq in. and the
recuperator low pressure outlet face is |10 sq in. By reducing the recuperator
pressure drop to 2.5 percent, a face area match is obtained, with a weight
penalty of only 3 1b. The 2.5-percent recuperator pressure drop was chosen
as the. design point for this BHXU combination, and the combined heat exchanger
weight is 209 Ib. It may be noted that once a face area match is obtained for
the two heat exchangers, a dimensional match may be obtained by suitably
adjusting the recuperator stack height to width ratio.

It should be noted that the recuperator curves for Figures |9 through 23
are all based on a recuperator end-section height of 2.0 in. (same at both ends)
and a ratio of 0.7 (Figure 8). In final recuperator sizing, the end sections
are adjusted to obtain the best possible gas flow distribution, as described
in a following section of this report. The resultant end-section designs
will cause-slight variations in face area, weight, and pressure drop splits
from those indicated by the curves of this section; but the variations are
small and exact matches are not necessary.

C. System Comparisons

A comparison of the six BHXU configurations studied is shown in Table 9.
Based on the results shown in this table and on considerations discussed in
other sections this report, Configurations | and 6 appear to be the leading
candidates for the BHXU system.

The configuration | tube-fin heat sink exchanger is slightly heavier than
the Configuration 2 heat sink exchanger, but it has the following advantage:
the smaller number of liquid passes in the Configuration | core (16 passes vs
20 passes in Configuration 2) provides greater simplicity and higher realiability
because of the fewer interpass braze joints required.

Configuration 3 is heavier than Configuration | and has the further
disadvantage of a large number of passes (26) required for the heat sink heat
exchanger. Although the use of plain tubes is attractive from the standpoint
of simplicity in fabrication, the use of dimpled tubes does not represent a
reliability problem for this heat exchanger because of the low temperature
gradients involved, the use of 8-mil tubing walls, and the freedom to expand
thermally provided by the mechanical design. In determining reliability, the
fewer number of braze joints required for the Configuration | design is
believed to be a more important factor than dimpling.
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Figures 20 through 23 are similar design point selection curves for other
heat sink heat exchanger core matrix configurations. Figure 20 is for the
tube-fin heat exchanger with I5 fins per inch ("optimum," as per Figure 16).
This heat sink exchanger, as the previous one, utilizes dimpled tubing to
increase the liquid film coefficient. Design point pressure drop split for
this BHXU is 2.6/0.9 (recuperator/heat sink exchanger), which is also close
to the minimum weight point. Combined weight is 199 1b.

The design point selection curves for the plain tube (undimpled) tube-fin
heat sink exchanger are shown in Figure 21. This matrix is exactly the same
as the SPT4 matrix with the exception of the nondimpling of the tubes. Due to
the poorer liquid film coefficients, the gas face area is larger and minimum
weight occurs at a somewhat higher heat sink heat exchanger gas pressure drop.
Recuperator/heat sink exchanger design pressure drop split for this BHXU is
2.3/1.2, and combined weight at this point is 228 1b. It may be noted that
liquid-side pressure drop for the heat sink unit is only 10 psi for this
matrix. Higher pressure drops resulted in excessively long tubes and thus
could not be used.

Design curves for the cross-counterflow and pure-counterflow plate-fin
units are given in Figures 22 and 23. 1In both cases, the maximum liquid-side
pressure drops that could be utilized were less than the 25 psi allowable;
and, in both cases, the heat transfer performance consequently suffers. 1In
the cross-counterfiow configuration, the limitation occurs because larger
liquid pressure drops can only be obtained by increasing the liquid flow
length. Since the liquid flow direction in the heat sink heat exchanger cor-
responds to one of the recuperator no-flow dimensions, the magnitude of this
dimension is restricted by the recuperator design. The two possible orienta-
tions of the heat sink exchanger, corresponding to the two no-flow directions
in the recuperator, are compared later. For the weight curves of Figure 22,
a minimum stack height of 10 in. was assumed.

In the pure counterflow configuration, the liquid flow area and length
are established by gas-side pressure drop limitations, and high liquid mass
velocities cannot be obtained. 1In this configuration, as in the cross-
counterflow configuration, a minimal fin height is used on the liquid side .
Liquid pressure drops are still low.

Recuperator/heat sink exchanger pressure drop splits are 2.6/0.9 and
2.5/1, respectively, for the cross-counterfiow and pure-counterflow plate-fin
cores. Total weights are 237 1b for the cross-counterflow unit, and 278 1b
for the counterflow unit. These figures are based on all-stainless construc-
tion for the heat sink exchangers. Axial conduction effects preclude the use
of higher conductivity fins in this heat exchanger as in the recuperator, the
axial conduction effect being approximately the same for the two exchangers.

It was impossible to obtain a plain tubular heat sink exchanger that was
suitable for matching with the recuperator or fitting within the allowable
envelope specified in the problem statement. Both weight and volume are high
for this type of core in a gas~-to~liquid application.
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0f the two plate-fin heat sink exchangers, the cross-counterflow unit is
more attractive than the pure counterflow unit because (I) it results in a
lighter package, and (2) it results in a smaller package, lacking the end
sections required by the counterflow unit for liquid access to the core.

The plate-fin cross-counterflow geometry for the heat sink exchanger is
more attractive for this application than it was for the NASA <olar Brayton
cycle system using low-pressure argon. The difference is attributable to two
factors: (1) the lower pressure in the argon Brayton cycle system (about 6 psi)
resulted in a shorter gas flow dimension in the heat exchanger and, consequently,
a greatly increased axial conduction effect for the plate-fin designs; and
(2) the poorer gas film coefficients and lower mass velocities obtainable with
low-pressure argon (as opposed to high-pressure Xe-He) established a require-
ment for a high ratio of gas-side heat transfer area to liquid-side area, which
is not easily obtainable in a plate-fin geometry.

A cross-counterflow plate-fin geometry allows two possible heat exchanger
orientations: in the Configuration 5 orientation, the liquid flow direction
is in the flow width direction referred to the recuperator; in the Configura-
tion 6 orientation, the liquid flow direction is rotated 90 deg so that it is
in the recuperator stack height direction. In the latter case, the stack
heights of the heat sink exchanger and the recuperator lie in orthogonal direc-
tions. Both configurations are feasible to match with the recuperator; Con--
figuration 6, however, represents a slightly better design. With the heat
exchanger and recuperator stack-up directions orthogonal, the face area match
can be based on a large recuperator stack height (<~ 20 in.) and a low heat
exchanger stack height (. 6 in.), both of which are desirable. The large
recuperator stack height (and corresponding small flow width) reduces end-
section weight for a given end-section pressure drop. (This effect is not
reflected in the weights of Table 9, since all recuperator weights are based
on a 2.0-in. end-section height; thus, actual recuperator weight for Configura-
tion 5 would be somewhat greater than shown.) The low stack height is benefi-
cial to the heat sink exchanger design because it reduces the liquid flow area
and increases the liquid film coefficient. The heat sink heat exchanger has
increased reliability in this configuration because of the reduced number of
fluid containment brazes, which is proportional to stack height.

Comparing the plate-fin and tube-fin heat sink exchangers (Configuration 6
vs Configuration |), the tube-fin geometry appears to have a weight advantage
over the plate-fin design. During the course of this study, however, small
scale testing of the solar Brayton cycle (argon system) heat sink heat exchanger
was concluded and results of that testing became available. The tests showed
that the unit as originally designed was undersized by about 25 percent, due
primarily to poorer than anticipated gas-side film coefficients. Applying
these results to the Configuration | heat sink exchanger, which has the same
core matrix as the referenced test core, would substantially reduce the weight
difference between the Configurations | and 6 BHXU's. In addition, the weight
associated with structural reenforcement of the core (not included in the
weights of Table 9) is much greater for the tube-fin heat exchanger than for
the plate-fin exchanger, which is an inherently rugged structure without re-
enforcement. It is estimated that final heat exchanger weights for the two

47
AIRESEARCH MANUFACTURING COMPANY
Los Angeles, California
W=




cge

JAY4

8L¢

82¢

00¢

60¢

LY

L7]

6%1

%G1

8yl

671

S8

06

6¢1

YL

Zs

09

9°¢

9°¢

G'¢

¢'e

92

G'¢

670

6°0

6°0

01

1y6 13y >oeizs uozesadnoad

01 Je[nolpuadaad uot3dadip
3ybi1ay 3yoeis ‘sassed g
‘urj-a3e|d mo|4433UNOO-5504)

jybtay »oeis Jozesad

-n2aJ4 031 |a|feded uol31oa41p
1yb1ay oels ‘sassed g
‘ulj-a1e|d MO} 4493UNOD~SSOJY)

ulj-sje|d MO|4Jda3unod adnd

sassed 9z ‘pajduwip
jou saqni ‘youy Jad suiy g
‘ulj-aqn3 MO| J4331UNOD-SSOJ)

sagni
poa|dwip ‘sassed o2 (youi aad
Suly G|) xl4jew pazjwiido
‘Ulj-aqnl MO} 4493UNOD-SSOJ)

saqny pa|dwip
‘sassed 9| ‘xlJ3iBwW ¥1dS
‘Ui 4-agn3 MO} JJ2IUNOD-SSOI)

|e3o]

dojeudadnoay

XHSH

Joledadnoay

XH
MuiS 3IesH

qr ‘3ybiamM

JuadJad
‘doag aanssaud

Adjauwoan %1131 2409
dabueyox3y 3uiIS jesy

-oN
uojeanbjuo)y

SNOILYYNIIINOD NXHE 40 NOSIYVAWOD

6 3189V1L

48

AIRESEARCH MANUFACTURING COMPANY

Los Angeles, California




core types would be virtually equal. On the basis of these results, in con-
junction with the simplicity of the plate-fin construction and the extensive
experience accumulated by AiResearch in the fabrication of plate-fin heat
exchangers, the decision was to use the Configuration 6 BHXU.

Detail Design Study

I. Design'Comparisons

Using the Configuration 6 BHXU geometry, as established during the
parametric analysis, a further analysis was made to determine the effect on
overall weight and system packaging due to variations in the recuperator
design. Three variations in recuperator design were investigated, as speci-
fied in Table 10.

TABLE 10

RECUPERATOR DESIGN VARIATIONS

Hot-side Fin Cold-side Fin
Design Height, Height, Stack Height,
Study in. in. in.
| 0.153 0.125 I8
2 0.153 0.100 18
3 0.153 0.125 2|

The first two design studies involved variations in the recuperator fin
set while the third study was based on a different recuperator stack height.
For all three cases, the pressure drop split between recuperator core and
recuperator end sections was based on minimum weight, as established by curves
similar to Figures 8 and 9, and the split between recuperator and heat sink
exchanger was such as to give minimum weight plus an approximate face area
match between the two exchangers. The optimization of the pressure drop split:
between recuperator and heat sink exchanger is shown in Figures 24, 25, and 26,
based on a total pressure drop of 3.5 percent for the heat exchanger combination.

Results of the study are shown in Table Il. It can be seen that total
‘weights are nearly equal for the three studies. The design study 3 BHXU can be
eliminated from further consideration because it results in a slightly larger
package dimension (in the stack-up direction) with no appreciable saving in
weight. For design studies | and 2, the recuperator end sections were rede-
signed to obtain uniform core flow distribution, following the procedure
described in a later section of this report. It was determined that the best
end section design for both design studies involved an increase of about 50
percent in end section pressure drop over that shown in Table Il. A final
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selection of the design study | BHXU was made for final design analysis because
the greater length of the recuperator in this configuration results in a
slightly more favorable arrangement of the BHXU ducting.

2. Final Design

Using the design study | BHXU of Table Il, the designs of both heat
exchangers were reexamined to determine their adequacy in meeting the heat
transfer and pressure loss requirements of the problem statement. It was
decided at this time to increase the margin on recuperator UA from |0 percent,
which was used throughout the preliminary sizing studies, to a new value of
20 percent, strictly as a means of ensuring that the required performance of
this unit would be met. Since preliminary analyses of the recuperator end
section designs indicated that a 50-percent increase in end section pressure
drop would result when the end sections were redesigned for uniform flow dis-
tribution, the recuperator UA was increased by increasing the unit stack height
while maintaining a constant gas flow length. As a result, the redesign
effected both a I0-percent increase in recuperator UA and a I5-percent decrease
in counterflow section pressure drop. Similarly, the margin on heat sink
exchanger UA was increased from essentially nil to |0 percent while the pres-
sure drop through this unit was decreased by |0 percent.

An additional factor affecting the size of the two heat exchangers was the
use at this time of a different set of fluid properties for the xenon-helium
gas mixture. The values of viscosity and thermal conductivity now used are
based on data received from the University of Iowa. The variation of these
properties with temperature, which was predicted from the Chapman-Enskog
theory, results in the use of a Prandt]l number at operating temperatures that
is about seven percent greater than was used during the preliminary design
study.

Final designs of the two heat exchangers, as modified by the above factors,
are described in Tables 2 and 3. Estimated final pressure drop allocations in
the BHXU system are summarized in Table 6.

3. Recuperator End. Section Design

The designs discussed in the preceding sections were based on the same
cross-flow end section geometry at each end of the recuperator. Use of this
end section symmetry in the final recuperator design would result in poor gas -
flow distribution because, although all flow paths followed by the fluids
through these symmetrical end sections are of equal length, they do not result
in equal pressure drops for given mass velocities. The nonuniformity in the
flow-path pressure drops results in a nonuniform flow through the counterflow
core, which has an adverse effect on heat exchanger performance.

The nonuniformity in pressure drops for equal flows along the parallel
flow paths is due to the large change in density that occurs from the inlet to
the outlet ends of the recuperator. Thus, the pressure drop along the long
flow path in the inlet end triangular section is not equal to the pressure
drop along the long flow path in the outlet end because the gas density differs
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PRELIMINARY H

TABLE I

EAT EXCHANGER DESIGNS

' D_eéig.n'Stu'dy | 2 3
Gas Pressure Drop, percent
Recuperator Core 2.24 2.07 2.19
End Sections 0.56 0.58 0.56
Heat Sink Exchanger 0.70 0.85 0.75
Weight, 1b
Recuperator Total 144 144 144
Heat Sink Exchanger 104 98 100
Combined 248 242 244
Recuperator
Height, in. 17.7 t7.7 20.7
Length, in. (8.1 15.5 18.3
Width, in. 8.1 8.8 7.1
Heat Sink Exchanger
Height, in. 6.1 6.1 5.5
Cold Length, in. I18.4 i7.0 19.6
Hot Lenéth, in. 15.0 : (6.0 15.5

—— e
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substantially between the two ends. This effect can be minimized by reducing
the height of the cold-end end section to the point where the pressure drops
at opposite ends are equal. Reducing the height of the cold-end end section
causes a reduction in the gas flow area in that section and thus an increase
in the end-section pressure loss.

The end section geometries must be such that balanced pressure drops are
obtained for both the high-pressure and low-pressure sides of the heat exchanger.
Within this requirement, a number of design solutions exist, since for each
geometry selected at one end of the exchanger there is in general a geometry
at the other end (obtained by varying end section RATIO* and height) which
size between the recuperator low pressure outlet and the heat sink exchanger
inlet faces, since the initial sizing of these units was based on an assumed
end section ratio of 0.7 at the cold end. Packaging studies show that the
amount of mismatch obtained can be handled with a short transition section
between the two exchangers, internally vaned to distribute the flow uniformly
to the heat sink exchanger.

4. Manifold Design

The high-pressure recuperator manifolds are designed for uniform core
flow using a "two-dimensional"” flow model. The flow configuration is "U"
flow and the header shape is rectangular. The sizing is based on obtaining
matched static pressure profiles in the inlet and outlet manifolds, thus
ensuring equal static pressure drops along all flow paths through the heat
exchanger.

On the low-pressure side, the use of matched profiles is not sufficient,
since the transition section between the two exchangers establishes essentially
a uniform pressure profile at recuperator outlet and heat sink exchanger inlet.
Constant static pressure drop on the recuperator low-pressure side is achieved
with a tapered inlet manifold that provides a constant static pressure at the
heat exchanger face. The taper of the manifold is ideally such that there is
a slightly decreasing mass velocity in the flow direction, resulting in a
small amount of momentum recovery to offset the pressure loss due to friction.
At the heat sink exchanger outlet, the manifold is simply sized large enough
to obtain an acceptable static pressure profile. As designed, the pressure
drop along the low-pressure outlet manifold is about |0 percent of the pressure
drop in the heat sink exchanger core.

Manifold pressure losses are summarized in Table 6.

5. Axial Conduction

Calculation of the effect of axial conduction of heat in the heat
exchanger core is an important step in the design of plate-fin heat exchangers.
The calculation of axial conduction in the recuperator is discussed in Appen-
dix B. The effect of axial conduction, which is calculated by the counterfiow
design program, is to reduce recuperator equivalent UA by about 8 percent.
Axial conduction in the heat sink exchanger was calculated using the H2300
nodal point analysis program (see Appendix A) and amounted to about 8 percent
for this unit also.

#See Figure 6.
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results in uniform flow on both sides. A number of such solutions were
obtained for the final recuperator design and are summarized in Table |2.

The procedure by which these solutions are obtained is shown in Figures 27
through 31. 1In these figures, the average frictional pressure drop for each
side of each end section is plotted as a function of end section height. The
design points marked on the curves occur where (|) the pressure drops at the
inlet and outlet are equal, for both sides of the exchanger, and (2) there is

a match between low-pressure and high-pressure side heights at both ends of the
exchanger. At these points, the frictional pressure drops along all parallel
flow paths in the end sections (summed for both ends of the recuperator) are

equal. Since the fluid velocity head is the same for all paths, other losses
associated with the end sections (turning, expansion, and contraction) are
equal and thus total pressure drops are equal. This analysis neglects minor

variations in velocity head due to heat transfer in the end sections.

Use of the balanced end-section design, in conjunction with flow dividers
that run the length of the counterflow core and prevent fluid cross-flow,
ensures equal pressure losses for equal flow rates along parallel fluid paths
and thus uniformity in the distribution of flow.

TABLE |2

END SECTION DESIGNS FOR BALANCED PRESSURE DROPS

Ratio¥* Height, inX
Hot Cold Hot Cold End Section End Section
Case End End End End AP, Percent Weight¥*¥ 1b
I 0.65 0.55 3.75 l.185 0.774 15.3
2 0.7 0.55 4.35 1.19 0.749 17.1
3 0.7 0.6 2.425 .075 |.003 10.8
4 0.75 0.575 4.3 I.185 0.780 17.0
5 0.75 0.6 3.4 I.155 0.80| 14.2

#See Figure 6
#*Plates and fins only

From Table 12 it may be seen that a tradeoff exists between end section
pressure drop and weight in the selection of an end section design. Case I
was chosen for the recuperator final design as representing the best compromise
solution. One result of this selection is that there is now some mismatch in
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6. Variable Specific Heat

During design of the heat sink heat exchanger for the NASA Engine A Brayton
cycle system, it was discovered that there would be a serious error in the
prediction of exchanger effectiveness if the variation in specific heat of
the liquid coolant with temperature were not accounted for in the design calcu-
lations. The increase in specific heat with temperature for Dow Corning fluid
(or other possible liquid coolants) causes a reduction in the mean temperature
difference between hot-side and cold-side fluids and a resultant decrease in
exchanger heat transfer performance. This effect occurs because the liquid
specific heat is lowest at the liquid inlet and highest at the outlet, result-
ing in a liquid side temperature profile that rises more steeply near the
inlet end of the exchanger and more gradually near the outlet end, thus approach-
ing more closely the gas side temperatures as compared with the profile for a
fictitious liquid with constant specific heat.

A computer program was written to determine the effect of variable liquid
specific heat on heat exchanger performance for cross-counterflow tubular
exchangers. In this program, the performance of each crossflow pass is com-
puted separately, based on average fluid properties within each pass, and the
results are synthesized to obtain overall heat exchanger effectiveness. An
iterative procedure is required to obtain the correct temperature distribution
throughout the heat exchanger, meeting the requirement that,within each pass,
the heat transferred match the enthalpy change in the fluid streams. Since
the variation in specific heat within each pass is relatively small, this
method gives an accurate evaluation of exchanger heat transfer performance.

Using this program, it was found that fluid properties variations in the
Engine A Brayton cycle heat sink exchanger caused a reduction of about 1.25 per-
cent in effectiveness, which was equivalent to i2 percent in heat exchanger UA.

Due to the similarity of the problem statements for that heat exchanger
and the BHXU heat sink exchanger, it is possible to use these results to esti-
mate the effect of variable fluid properties on the BHXU exchanger. This
effect is estimated to be a |2-percent reduction in equivalent UA and has been
accounted for in all heat sink exchanger designs.

Heat Sink Exchanger Capacity-Rate Ratio

An analysis was made of the effect on the BHXU of varying the heat sink
heat exchanger capacity-rate ratio. Capacity-rate ratios of 0.73, 0.8, and
0.95 were analyzed. For each case, the pressure drop split between recuperator
and heat sink exchanger was adjusted so as to obtain an approximate face area
match between the recuperator low-pressure outlet and the heat sink exchanger
inlet. Curves showing the face areas and resultant pressure drop splits for
the heat exchangers are presented in Figure 32. It can be seen that increasing
capacity-rate ratio causes the design pressure drop split to move in the direc-
tion of lower recuperator pressure drop and higher heat sink exchanger pressure
drop. Resultant weights for the individual exchangers and the combination of
two exchangers are shown in Figure 33. Results of the analysis are summarized
in Table 3. It should be noted that the weights shown are preliminary design
estimates and would require upward revision of the same magnitude as the dif-
ference between final and preliminary design weights for the reference BHXU,
i.e., about 33 percent for each heat exchanger.
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TABLE 13

BHXU DESIGNS AT SEVERAL CAPACITY-RATE RATIOS

Pressure Drop, percent Weight, 1b

Heat Sink HX

Capacity-rate | Heat Sink ‘ Heat Sink
Ratio HX Recuperator HX Recuperator Total
0.73 0.48 3.02 66 143, 209
0.8 0.56 2.94 81 144 225
0.87 0.72 2.78 104 144 248
0.95 1.03 2.47 164 148 312

EC/LS Heating

To establish the feasibility of extracting liquid from the heat sink
exchanger for the purpose of providing heat to an environmental control and
life support system at one or more discrete temperature levels, a calcula-
tion was made of the interpass temperatures of the Dow Corning fluid in the
heat sink exchanger. Figure 34 shows the liquid temperatures that exist at
the interpass locations. It would be inconvenient to extract liquid from
between the first and second passes (interpass location [-2) or from between
the seventh and eighth passes (location 7-8) because, at these locations,
extraction of the active loop fluid would be from the same face at which the
redundant loop fluid enters or exits ‘the core. Extraction of liquid from
the other locations would require only a minor modification of the heat ex-
changer design.

One of the possible requirements, as indicated by NASA, is to provide
heat at a temperature level of 250°F or above. Figure 35 shows the amount of
heat available above 250°F from the liquid stream exiting the heat sink ex-
changer as a function of the heat exchanger capacity-rate ratio. This curve
is based on the assumption of no heat removal from the liquid at lower tem-
peratures. Removal of heat at lower temperatures would reduce the liguid out-
let temperature from the heat exchanger and thus the heat available above
250°F. From Figure 35 it can be seen that approximately 12,300 Btu/hr is
available at the design capacity-rate ratio of 0.87.
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Start-Up Temperature Transients

. Mounting Brackets

The transient temperature distribution in the BHXU mounting brackets
under start-up conditions was analyzed using AiResearch computer program H2361,
a nodal point thermal analysis program. The first calculation was made for a
bracket mounted on the recuperator side plate at the hot end of the recuperator.
Figure 36 shows the two-dimensional bracket geometry assumed for the calcula-
tion and the calculated temperature history for some typical nodal points of
this geometry. The basic assumptions governing the calculation are listed
below.

(a) The bracket geometry is two-dimensional, as shown in Figure 36, with
a reinforcement plate thickness of 0.375 in., a reinforcement plate
width of 6 in., and a total bracket height of 2.8 in.

(b) The bracket is perfectly insulated so that the only heat transfer
is between recuperator side plate and bracket.

(c) The bracket material is 347 stainless steel.

(d) The heat exchanger side plate in contact with the bracket maintains
a temperature equal to the core hot passage metal temperature during
the transient, i.e., the side plate temperature in the vicinity of
the bracket is not assumed to be depressed due to the heat flow into
the bracket.

(e) At start-up, gas at I1701°R enters the recuperator hot inlet and the
recuperator, initially at 0°F, starts heating up with a [5-sec time
constant,

Due to the fast response of the recuperator and consequent rapid rise in side
plate temperature, the temperature differentials are seen to be quite large

for a bracket mounted on the recuperator side plate. A second calculation was
made for a bracket located on one of the recuperator hot-end manifolds. The
bracket geometry assumed is essentially that of Figure 36, with two reinforce-
ment plate thicknesses considered - a thickness of 0.47 in. to simulate a
bracket designed for a soft-mounted BHXU and a thickness of 1.12 in. for a
bracket designed for hard-mounted BHXU. The bracket geometries and nodal point
locations are shown in Figure 37. )

Temperature histories of the two brackets are shown in Figures 38 and 39.
Temperature differentials encountered are much less than those obtained with
a bracket mounted on the recuperator side plate because of the slower response
~ of the manifold to the inlet gas temperature. A film coefficient of 8 Btu/hr-
£t2-°F was used for heat transfer between the gas and the manifold.
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2. BHXU Thermal Growth

The temperature histories of the recuperator and the turbine exhaust duct
during startup were determined. This information is used to size the bellows
in the turbine outlet duct to allow for differential thermal expansion between
BHXU and BRU, as discussed in the next section of this report. Average re-
cuperator temperature and turbine exhaust duct temperature are plotted as a
function of time in Figure 40.
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STRUCTURAL DESIGN

This section treats the various structural aspects related to the detailed
design of the BHXU. Although the BHXU consists of two separate heat exchangers,
the recuperator and the heat sink heat exchanger are rigidly joined to form an
integral structural element with respect to environmental loads, support
bracketry, and interconnecting ducts to the BRU and heat source heat e§changer.
In addition, the recuperator and heat sink heat exchanger are each designed to
provide adequate structural integrity for pressure containment loads and thermal
stresses to satisfy the required reliability objectives.

Summarz

l. Design Criteria

The operating conditions for the BHXU package include a maximum operating
temperature of 1701°R (1241°F) in the recuperator for a design life of 5 years
(about 44,000 hr). The short-time material properties were used for temperatures
below 800° to 900°F. For sustained operations at higher temperatures, the |
percent creep and stress rupture properties for 50,000 hr at temperature were

used. The design of the heat sink heat exchanger is based on material properties
at 325°F.

It was further specified that a 100-cycle life is required for this unit.
A typical cycle is defined to be startup of the unit, operation at design
temperatures and pressures, and shutdown. This requirement applies primarily
to thermal loads due to temperature gradients and differences in the system.
Thermal stresses exceeding the material yield strength cannot be completely
avoided due to the rapid startup condition. Structural performance was eval-
uated by considering the relation between accumulated plastic strain per cycle
and number of cycles to failure. The results of the analysis presented below
indicate that a cycle life considerably in excess of the |00-cycle requirement
will be achieved.

2. Material Selection

Type 347 stainless steel was selected for the recuperator and heat sink
heat exchanger based on its suitability for the design operating conditions
and AiResearch experience with this material in similar applications. Hastelloy
X was used for the hot duct and in the high temperature section between the BRU
turbine outlet and the BHXU high temperature inlet manifold flange. The transi-
tion from Hastelloy X to Type 347 steel is accomplished in the flange between
the bellows and the recuperator pan to place the thermal expansion loads in a
region away from the more sensitive BRU and recuperator core matrix.

\
|
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3.  Heat Exchanger Core Design

The heat exchanger core utilizes standard AiResearch fin and plate
geometry and presents no serious structural design problems for the desired
operating conditions. Table |4 shows the operating conditions, fin geometry
and associated minimum safety margin. The minimum tube plate thickness is
0.008 in. and minimum side plate thickness is 0.060 in.

4. Manifold and Duct Design

The heat exchanger manifold configurations were selected based on
fabricability considerations and the desire to achieve a lightweight design.
The recuperator high pressure outlet and heat sink gas outlet pans are of
circular cross section with an included angle greater than 180 deg. This
design places the greater portion of the shell under direct membrane stress
which produces the lightest weight configuration. The recuperator high and
low pressure inlet pans are essentially semicircular with short flat sections
mating to the core. This design is somewhat less efficient than a circular
shape. However, the flat area is small on the low pressure inlet and space
limitations preclude use of a complete circular shape on the high pressure
inlet.

5. Bellows Design

Expansion bellows were required in each of the three ducts connecting
the BHXU to the BRU. These bellows isolate the BHXU thermal movements so
that duct loads applied to the BRU scrolls would be within acceptable limits.
Preliminary thermal movements at the three bellows were estimated and this
information, along with other specific design requirements, was submitted to
several bellows manufacturers to obtain proposed configurations. AiResearch
then performed a stress analysis of each candidate bellows configuration.
Finally, double-ply, formed bellows manufactured by Aeroquip Corporation were
selected for all three ducts based on the most accurate accommodation of the
problem statement.

6. Mounting System Design

A six-point mounting system was selected based on requirements to: (I)
minimize thermal expansion differences between the BHXU and BRU, (2) minimize
bracket and heat exchanger loads and (3) minimize thermal stresses in the
recuperator due to transient temperature gradients which occur due to dif-
ferential heating (or cooling) of components with different thermal masses.
The brackets are mounted on manifolding to eliminate the possibility of
severe thermal stresses in the core (particularly in the fins) which would
arise during transient conditions.

The six-point system is designed to allow for free thermal growth of
the recuperator about a fixed point which is located on the recuperator-to-
heat sink transition piece near the BRU. Pairs of brackets were located
on the recuperator high pressure outlet pan, transition piece and heat sink
gas outlet pan to provide a lightweight support bracketing system. Partic-
ular consideration was given to minimizing thermal expansion differences in
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the plane of the attach points on the brackets and maximum deflection differences
of less than 0.005 in. were achieved for the entire operating cycle of the
BHXU.

Detailed bracket design was based on the use of an isolation mounting
arrangement which will limit the BHXU maximum load to 24 g in the spacecraft
axis and 20 g lateral to the spacecraft axis. A comparison of an isolation
mounting vs a hard mount system for solid supports showed that a large weight
penalty is sustained in the BXHU brackets for the hard mount case. In addition,
core reinforcement would be required to transmit the loads to the brackets.

The actual bracket supports are box-structures which are more efficient than
solid rings for transferring the loads from the brackets to the cores.

The mounting approach recommended by AiResearch for the BXHU-BRU package
consists of a frame, hard mounted to the BHXU and BRU (with internal thermal
expansion provisions), which is in turn mounted on isolators. The entire
mount frame and Brayton cycle subsystem therefore acts as a single unit within
the spacecraft or test facility. The structural analysis and design con-
siderations required to integrate the frame structure with the present equip-
ment are further amplified later in this section.

Structural Design Criteria

A variety of load conditions, stress conditions, and types of failure
mode possibilities will be experienced by the BHXU during its five-year
service life. The detailed set of design criteria discussed below was used
to design the various BXHU components.

I, Allowable Stresses for Internal Pressure Design

The standard design practice employed by AiResearch is to design the
pressure carrying structure for proof pressures of 1.5 times the working
pressures and for burst pressures of 2.5 times the working pressures. The
structure must not yield at proof pressure or rupture at burst pressure. This
implies that the proof pressure is the governing design condition if the ratio
of yield stress to ultimate stress is less than 0.6 and that the burst pressure
will govern if the ratio is greater than 0.6. The allowable stress at working
pressure is, therefore, the lesser of the following:

o = (f

all u)/2.5 (1a)

t

oa11 = (fty)/I.S (1b)

When the limiting stress is due to bending, a small amount of yielding
can be allowed in the outermost fibers which leads to a modified stress dis-
tribution through the thickness. The ideal plastic bending moment is 1.5
times the computed elastic bending moment for the same peak stress. Accord-
ingly, the allowable indicated elastic stress due to bending loads is taken
to be 1.5 times the allowable values in Equation ().
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At elevated temperature, the above conditions must be satisfied, and in
addition, the component must be satisfactory for long time creep effects.
A set of criteria for creep must be comparable to those for the short time
loading. Accordingly, limitations based upon stress=-to-rupture and stress-
to-one percent creep must be established. The rated design life of the unit
is five years and it will be designed for sustained pressure operation at
maximum operating temperature throughout the entire design life., Allowable
stresses at working pressure must be the lesser of the following:

171.2 (2a)

o = [(l-percent creep stress)

all 50,000 hr

o [ (creep-rupture stress)50 000 hr]/|.5 (2b)
J

all

Material properties at elevated temperatures are very sensitive to
temperature. For the candidate materials, an increase in temperature of
I00°F typically leads to a decrease of approximately 33 percent in creep and
stress rupture strengths. Therefore, an allowance must be made to account
for the possibility of overtemperature. The design temperature used to
establish allowable stresses is taken to be the maximum operating temperature
plus 100°F.

One modification of the above will be made for bending load designs which
will be governed by the material creep properties. When the limiting pressure
stress is caused by bending load, the steady creep stresses are substantially
lower than those indicated by an elastic analysis. By using the plastic
hinge moment analogy, an allowable creep bending stress can be used that is
I.5 times the stated values from Equation (2). Stated slightly differently,
the actual sustained creep stress due to bending is taken to be 0.667 times
the indicated elastic stress.

2. Allowable Stresses for Inertia Loads

Inertia loads may be experienced during any phase of the operating cycle
of the unit. The mounting brackets must, therefore, be designed to carry the
inertia loads at elevated temperature. Since the maximum loads occur for a
relatively small time duration during vehicle launch, the short time material
properties will be used.

The design allowable stress used for the inertia loads will be governed
by Equation (I) for direct stresses and modified by a 1.5 factor for bending
as discussed above. It should be noted that this will lead to a conservative

bracket design because the above criteria allows for simultaneous application
of the various inertia loads discussed below. In practice, these loads will

not occur simultaneously and the peak loads experienced by the mounting system
may be considerably less than the quoted combined maximum values. For example,
application of the shock load and vibration load at different times would
produce maximum bracket loads at about 50 percent of the design load capability.
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3. Allowable Thermal Fatigue Stresses

The magnitude of thermal stress due to temperature differences developed
during the rapid heat-up cycle of the system results in plastic deformations
in various components, particularly in the hot operating regions. The minimum
operating life requirement of the unit is 100 thermal cycles. A minimum
design life of 400 cycles would be used to ensure that the 100-cycle life
is achieved. The required analyses were based on the accumulated plastic
strain approach for estimating fatigue life. The number of cycles to failure
N is determined from the formula: '

N = 2¢ (3)
2 2
(e ) + (e)
Pr-2 P* 45
where N = cycles to failure
ep = plastic strain
C = material ductility constant

The ductility constant is based upon the material reduction of area property,
RA, and the formula recommended by S. S. Manson of NASA Lewis Research Center
is

100
C = 0.79 In (m)

The ductility constant is determined from material properties, and the plastic
strain is estimated from a typical load cycle for the material. Two examples
of loading sequences are shown in Figure 4| with the associated expressions

" for determining ep. Cumulative effects for different load cycles during the

material life are handled by a fatigue damage rule similar to Miner's rule.
In addition, since both creep and fatigue are occurring simultaneously, the
effects of the two material damage phenomena are important.

Material Properties

The physical and mechanical properties of Type 347 SS and Hastelloy
Alloy X are shown in Tables 15 and |6, respectively. The references used in
computing the tables are included. The design allowables for 347 steel are
shown in Table 17 for sustained and short-time operation under direct and
bending stresses,

Core Analysis

l. Pressure Containment, Recuperator

Calculations are presented for stresses in the fins and plates of the
recuperator core structure. The core geometry will consist of 0.004~in. thick
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TABLE (6

HASTELLOY X MATERIAL PROPERTIES

Thermal
| Percent Stress to . .
. . Elastic | Expansion,
o _ Creep in Rupture in Modulus -6
Temperature, tu’ ty’ [50,000 hr,| 50,000 hr, | ™" 717 10
J psi psi ps i psi 10° psi in./in./°F
70 114,000 | 52,000 : 28.6
200 111,000 51,000 28. 1 7.70
400 107,000 | 48,000 26.9 7.82
600 103,000 | 46,000 25.8 7.90
800 98,000 | 44,000 24.6 8.15
1000 94,000 | 42,000 23.4 8.39
1200 83,000 | 40,000 13,000 18,400 22.3 8.56
1300 73,000 | 39,000 9,800 12,500
1400 63,000 | 38,000 8,400% 10,200% 21.1 8.81
1600 - 37,000 | 26,000 19.9 9.02
*|350°F

Reference - "High Temperature High Strength Nickel Base Alloys" The
International Nickel Company Inc., 67 Wall Street,
New York, N.Y., 10005, Copyright 1964
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TABLE 17

347 STEEL ALLOWABLE DESIGN STRESSES

Allowable Stress for

Sustained Operation

Allowable Stress for
Short-Time Operation

Max imum
Operating Design Direct Bending Design Direct Bending
Temperature, | Temperature, | Stress, | Stress, | Temperature, | Stress, | Stress,
°F °F psi ps i °F psi ps i
70 70 24,000 | 36,000 70 24,000 | 36,000
350 350 23,000 | 34,000 350 23,000 [ 34,000
1200 1300 5,000 - 7,500 1200 16,000 | 24,000
1250 1350 3,600 5,400 1250 15,300 | 23,000
84
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rectangular offset and plain fins and 0.008-in. thick plates. The rectangular
offset fin spacing is 0.0625 in. (16 fins/in.) and the triangular end fin
spacing is 0.10 in. (10 fins/in.)

Fin tensile stress due to internal pressure is computed from the follow-
ing formula:

: _ P bfin B tfin
fin T F t,..
fin
where p = internal pressure
bfin = fin spacing
t.. = fin thickness
fin
f = fin strength efficiency factor

Fin strength efficiency factors have been found to range from 0.25 to
0.50 based upon actual test results on a wide variety of plate and fin con-
figurations. The 0.25 factor will be used in high temperature designs to
reflect the uncertainty in the long-life material properties and 0.50 will be
used in low temperature situations. The strength efficiency factor is defined
as the ratio of actual burst pressures to burst pressures as calculated from
ultimate stress properties. The apparent reduction in strength is attributable
to nonuniform load distribution across the fins which arises due to inequality
in fin height. The taller fins actually buckle during the braze operation and
as a consequence the shorter fins carry the bulk of the pressure containment

forces. Since the fins are never perfectly straight, pressure loads will also
cause fin bending stresses. Finally, the fins cannot be formed with perfectly
square corners, and stress concentrations will actually occur at the fin to

plate braze fillet joints. This strength reduction factor is based upon the
performance of successfully brazed heat exchangers, i.e., the failure mode

at burst is tensile rupture of the fins. For poorly brazed heat, exchangers
(incomplete braze joining of the fins and plates), the pressure containment
capability of the plate fin structure is drastically reduced. For this reason,
all heat exchangers are subjected to a proof pressure test at |50 percent of
working pressure. This proof test is expected to cause a failure in defective
cores, and conversely, a unit that passes the proof test is expected to achieve
the required pressure capability. '

For the given core geometry, the maximum fin stress, in the triangular
ends, is ‘

__p_ [o.10 - 0.004) _
%in ~ 0.25 ( 0.004 %P
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The triangular fin stress in the high pressure side which has a 1300°F
design temperature is therefore

Oein = (96)(56) = 5400 psi

Similarly the stress in the triangular low pressure side (30.5 psi) is
2900 psi. The aliowable stresses of 5000 and 3600 psi, respectively, are listed
above for 347 stainless steel. The fin stress on the high pressure side
exceeds the allowable stress by 400 psi. This indicates that the over-
temperature capability of this fin set is only 90°F (call at [1290°F equals

5400 psi). The recuperator fin stress summary (Table 14) shows that the
other fin geometries have excess strength for the 100°F overtemperature
requirement.

Maximum plate bending stress is given by the following formu]a for a
fixed ended plate under uniform normal pressure:

2
b.. - t_.
_ P fin fin
C — D e
plate 2 t
.F
where tf = plate thickness

The calculated bending stress for a 25.5 psi (56 - 30.5) pressure
differential across the plate is

25.5 (010 = 0.004\°
9plate 2 0.008

Op]ate 1800 psi

Type 347 stainless steel is a satisfactory material for this design,
Higher pressure differentials will be experienced by the outer plates, how-
ever, they are 0.060 in. thick to prevent damage from handling or other
external causes. The side plates also carry the manifold pressure loads as
well as the acceleration loads into the core.

2. Pressure Containment, Heat Sink Heat Exchanger

The plate-fin heat sink heat exchanger uses a spacing of 0.0625 in., a
0.153-in. fin height and a 0.004-in. thickness on the gas side. The maximum
design pressure is 30.5 psi. On the liquid side the geometry is 0.002-in. fin
thickness with an 0.050-in. fin spacing. The design pressure on the liquid
side is 100 psi. The maximum expected temperature in this unit is 325°F.
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The fin tensile stress on the high pressure side is

- _ P (bfin B tfin)
fin 0.50 tfin

5 _ 100 {0.050 - 0.002

“fin = 0.50 0.002

Ocin = 4800 psi

This is well below the allowable stress for Type 347 stainless steel
at 325°F (Gall = 23,000 psi).

The maximum plate bending stress occurs for a pressure differential of
|00 psi assuming loss of gas side pressure. For 0.008 in. thickness plates,

_ 100 (0.050 - 0.002 2
%plate 2 0.008

% late " 1800 psi

3. Core Thermal Stresses

Core thermal stresses were minimized in the design by placing the mount-
ing brackets on the pans, rather than on the side plates, and by increasing
sheet thickness in the passages adjacent to the side plates. Sheet thicknesses
of 0.012, 0.016, and 0.020 in. were used to transition from the 0.008 in. plates
in the interior to the 0.06 in. side plates. This design approach reduces the
transient temperature differentials between the side plates and the adjacent
sheets and it improves the area ratios between sheets to give better load
distribution. Of the two effects the improved load distribution may give
the largest reduction in sheet thermal strain. For example, when the side
plate is significantly stronger in load carrying ability than the adjacent
sheet, the weaker sheet is deformed to nearly the full thermal strain
potential, i.e.,

e = aAT

However, when the balance between the sheets is optimum the strain level in
each sheet will be

e = aAT/2
To achieve balance, adjacent sheet thickness greater than the side plate

thickness would be required, however, the use of 0.020-in. rather than
0.008-in. plates will give a significant thermal strain reduction.
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Manifold and Duct Design

A summary of the gas side pan designs is shown in Table 8. The maximum
internal pressure stresses, allowable stresses and external (buckling) pressure
capabilities are included. An external pressure strength of | atm is required
due to a requirement for helium leak checks which are accomplished by evacuat-
ing the core. Two basic configurations were used: a circular pan with an
included angle greater than 90 deg (balloon shape) and a semicircular pan with
flat sides joining to the core. Figures 42 and 43 show the two types of designs
along with free body diagrams and equations for determining the various dis-
continuity loads relevant to each shape.

The high pressure outlet and low pressure outlet pans are circular shape
to achieve the most effective design for these pans. For example the high
pressure outlet would be greater than 0.080 in. thick for the same flow area
if a combination of semi-circle and flat sides were used. This would be an
increase in weight of over 25 percent over the sizes used. In addition, the
transfer of inertia loads across the flat section would also require extra
reinforcing as compared to the circular shape.

The low pressure inlet pan has a varying height along its length which
is accommodated by using a varying height flat section. The flat section is
preferable to a varying radius circular shape due to relative ease of fabri-
cation. The small weight penalty associated with using the flat sections
rather than a full circle does not warrant the added compelxity. The high
pressure inlet pan also has a flat portion adjacent to the core since space
limitations precluded use of the more efficient circular shape. The pan is
of relatively small size and operates at relatively low temperatures so the
weight penalty associated with using a non-optimum shape is not significant.

The analysis of pan stresses assumed the pans fixed to the recuperator
and heat sink heat exchanger. The maximum discontinuity bending stresses
occur at the core attachment and generally exceeded membrane stresses in the
pans. A discontinuity analysis was also performed on the high pressure outlet
between the pan, doubler and mounting bracket ribs. This analysis is shown in
Figure 44. Figure 45 shows the analysis of the side pan on the transition
ducting between the recuperator and heat sink heat excahnger.

A summary of the stresses in the ducting system connecting the BHXU
and BRU is shown in Table 19. The stresses in the pipe bends due to .internal
pressure are also shown. The allowable stresses shown in the table exceed
the applied stresses in all cases. '

Bellows Design

It was determined during the conceptual stage of the BXHU program that
expansion bellows would be required in each of the three interconnecting ducts
between the BHXU and the BRU. 1In this way, the BHXU thermal movements were
isolated from the BRU thermal response such that the resulting ducting forces
and bending moments applied to the BRU scrolls were held within acceptable
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PAN CONFIGURATION
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FREE BODY DIAGRAMS

ROTATION AND DEFLECTION EQUATIONS FOR OBTAINING THE

DISCONTINUITY FORCES AND MOMENTS, Q AND M
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Figure 42.
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Low Pressure
Inlet

3.395 in.

.53 in.
0.060 in.
0.120 in.

30.5 psi

20.3 x 10° psi
0.3

B =0
w = 0
) = 8,
Wi = Wy

High Pressure

Inlet

.85 in.

0.93 in.

0.05 in.

0.05 in.

56.0 psi

26.6 x 10° psi

0.3

BOUNDARY CONDITIONS

A-31937

Low Pressure and High Pressure Inlet Pan Configurations .



PAN CONFIGURATION

t Low Pressure High Pressure
Qutlet Outlet
///f\\\\\\ R,  3.91 in. 2.80 in.
R 3.31 in. 2.47 in.
t 0.050 in. 0.060 in.
R RECUPERATOR| et oc 1
OR o) 57°50 61°54
HEAT SINK P 30.5 psi 56.0 psi
E 28 x 10° psi 20.7 x 10% psi
W 0.3 0.3
FREE BODY DIAGRAM
lW)Q
o (
P
ROTATION AND DEFLECTION EQUATIONS FOR DETERMINING THE
DISCONTINUITY FORCES AND MOMENTS, Q AND M
6 - 3PR, 2B82SIN® Q- 4B3
2EtTAN® EtK, EtR.K,
-(1 - 5)ere,
_ 2 BR2SINg 1 2B2SINg
Mo Et T TEe (KZ ¥ K,) - e, M
Ky = | _.I_'__ZE
28
T 47
K, I 75
2
_ 4 _u2y(Ra
B = ¢/3(1-p2)(Re)
BOUNDARY CONDITIONS
8 = 0
w = 0 A-31938

Figure 43. Low Pressure and High Pressure Outlet Pan Configurations
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CROSS SECTIONAL VIEW

",/—‘BRACKET TORQUE BOX

p
DOUBLER
/_ ty
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R
FREE BODY DIAGRAMS £
t, Lo
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B
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~
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A-31939

ROTATION AND DEFLECTION EQUATIONS FOR SEMI-INFINITE CYLINDER

9,

Wi

2870, e - B1Dy M
(1) RO P B
Et, 28¥0, '~ 287D,

ROTATION AND DEFLECTION EQUATION FOR SHORT CYLINDER

8,

Wy

82

where

LY s K :
= g M o™ s Lty U
K 8 v L (. PR?
= 575 Me - Tp Mt &t - (1 - % ) £t,
s Y B K
= oM "z M tEep &t U
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= - M T M - e % sy U - () - B) ™
Et}
b= T
Et3
- =2
b =73
&
8, = Js 1-p2
-
VRt
&
A T
JRe,

K,B,5,Y,L and V are the short cylinder influence coefficients

Figure 44,
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BOUNDARY CONDITIONS
81 (semi-infinite cylinder)
wy (semi-infinite cylinder)
8, = 0
wg = 0

RESULTING MOMENTS AND SHEARS

My = =3.2741 in.-1b/in.
My = 9.7284 in.-1b/in.
Qr = -20.3672 Ib/in.

Q2 = -34.8404 1b/in,

MAXIMUM COMBINED STRESS

56.0 psi
0.060 in.
0.110 in.
0.50 in.
3.91 in.

20.7 x 10° psi

8y (short cylinder)

wi (short cylinder

- £+ 8M PR .
Smax = YTty = 7282 psi
ALLOWABLE STRESS
LTI 7500 psi

High Pressure Outlet Pan Discontinuity Analysis



max

Gali

SIDE PLATE CONFIGURATION

t.
P
SRITITITITRRIIY
7 v
- L
A-31940

= 2.9 in.
- 0.080 in.
= 30.5 psi
- T;z _ 30'5|§2°9)2 = 20.4 in.-1b/in.
_ %% - %%%ég%% = 20,040 psi
= 23,000 psi

Figure 45. Transition Duct Analysis
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limits. Each component (i.e., the BHXU and BRU) is separately attached to a
mounting frame to withstand environmental loads due to launch and flight into
orbit. Since each unit will undergo an appreciable temperature increase to
reach operating temperature and must be tied down at a single mount point, the
remaining supports must be selected to absorb applied loads and yet allow free
thermal expansion. I
Wherever a decision is made to employ bellows, it is incumbent upon the
designer and user to satisfy four important sequential steps. These are:

Step l--Develop an accurate estimate of thermal movements. In rapid
startup equipment, the transient relative motions for a bellows
occasionally far exceed the steady-state movement. In addition,
accurate data must be obtained regarding operating pressures and
temperatures. '

Step 2--With the data collected from Step |, a specification must be
generated for use by the prospective bellows manufacturers. This
specification must be complete and explicit. For elevated temperature
applications it is necessary to define stress limits for both pres-
sure and thermal displacements to ensure attainment of a satisfactory
component.

Step 3--A careful verification should be made of the proposed bellows
configurations. While almost all of the well established bellows
manufacturers are able to construct and deliver good components,

many of them depend upon highly empirical techniques to arrive at
their designs. When faced with nonstandard or difficult design
problems, the actual performance of these bellows in terms of spring
rate or stress per unit motion can be much different than what is
indicated by the bellows vendor. Discrepancies by as much as a
factor of four between vendor analysis results and AiResearch results
have occurred. Numerous actual bellows have been checked by compar-
ing the AiResearch computer analysis with load compression test

data, and the results have been found to agree within £20 percent.

Step 4=--During installation of the bellows into ducting and then

into the final assembly, great care must be taken to protect them
from being damaged. The bellows will usually be tolerant of small
amounts of misalignments during final assembly, but, unless specifi-
cally designed for tolerance buildups, the bellows should not be used
to take up large deviations from proper fit up.

l. Bellows Procurement and Selection

Initially, AiResearch prepared and submitted a preliminary specification
to several bellows manufacturers. This specification included preliminary
thermal movements, spring rates (based on acceptable BRU scroll loads),
operating temperatures and pressures. In addition, operating and cyclic life
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were specified. Three companies responded with single-ply formed bellows

which would have utilized standard tooling to form the convolutions. AiResearch
then performed a stress analysis on each of the proposed bellows to determine
stresses due to pressure containment and thermal movements.

Subsequent to this submittal of bellows design, further analysis was per-
formed on the BHXU to assess different mounting concepts for their influence
on bracket design and duct thermal movements. A thermal transient analysis
was also completed which permitted a more realistic calculation.of BHXU, BRU
and interconnecting duct thermal movements during the startup process (The
BHXU plate-fin structure responds rapidly to temperature rise wheras the BRU,
the interconnecting ducts and the BHXU pans respond much more. slowly during
startup.). This calculation revealed that the relative thermal movements dur-
ing the transient period were much greater than at the steady-state final
movement for the high temperature (turbine outlet) 6 in. dia bellows. In
addition the cold bellows diameters were increased from 3 and 3.5 in. to 3.5
and 4 in., respectively. Accordingly, revised bellows specifications were
prepared, and these were resubmitted to the manufacturers. The revised speci-
fications, shown in Tables 20, 21, 22, also included the requirement for two-
ply bellows which provide two important advantages over single-ply bellows:
increased leakage reliability (the main concern being the longitudinal seam
welds) and reduction in bellows spring rate (for the same pressure containment
capability), hence lower duct loads. Upon receipt of the modified proposed
designs from the manufacturers, a detailed analysis of stresses due to thermal
movement and pressure containment was carried out using an AiResearch computer
program that had been used previously and verified on another program. The
computed stresses and bellows spring rates were then compared to the allowable
values and a selection was made, with NASA concurrence.

0f the three manufacturers that responded to the procurement request,
designs from only one, Aeroquip Corp., was found to satisfy all design objec-
tives. Accordingly, Aeroquip Corp. was selected to supply the set of three
bellows for the BHXU. The details of the selected bellows configurations are
presented in Table 23.

2. Bellows Thermal Movements

An isometric sketch depicting the physical arrangement of the BHXU and
the BRU is provided in Figure 46. This drawing shows the fixed mounting point
for each unit and the location of the three bellows. The figure also shows
the set of reference coordinate axes that have been used to describe the
thermal motions at each bellows.

The thermal movement directions for the 3-1/2 in. compressor bellows are
shown in Figure 47. The thermal movements, composed almost entirely of slow
heatup motions, are summarized in Table 24. The thermal motion at each end of
the bellows and the net relative movement, the algebraic difference between
movements at each end, are presented.
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TABLE 20

BHXU 3-1/2 IN. DIA BELLOWS

- TOTAL LENGTH —————m——o]

$-43192

MATCHING DUCT SIZE = 3,50 IN, 0D X 0.0335 IN, WALL
TOTAL LENGTH = 4.00 IN. MAXIMUM, ACTIVE LENGTH = 2.50 IN. MAXIMUM
LINER REQUIRED
LINER ID TO BE 3.43 IN.
OPERATING TEMPERATURE = 300°F
MATERIAL: TYPE 347 STAINLESS STEEL OR 321 STAINLESS STEEL
WORKING PRESSURE = 56 PSI
REQUIRED MOVEMENTS
AXIAL = 0.00 IN.
LATERAL = 0.040 IN.
SHEAR FORCE TO DEFLECT BELLOWS LATERALLY = 300 LB
CYCLE LIFE = 1000
BELLOWS TO BE AT LEAST 2 PLY CONSTRUCTION
BELLOWS MUST BE BRAIDED TO REACT INTERNAL PRESSURE FORCE
PROOF PRESSURE = 84 PSI
BURST PRESSURE = 140 PSI
HELIUM LEAKAGE AT 56 PSI TO BE LESS THAN | X 10~© ATMOSPHERIC CC/SEC

REFERENCE: AIRESEARCH SOURCE CONTROL DRAWING 183444
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TABLE 21

BHXU 4-IN. DIA BELLOWS

_JL

- TOTAL LENGTH -

$-43190

MATCHING DUCT SIZE = 4,00 IN. OD X 0.035 IN., WALL .
TOTAL LENGTH = 4.00 IN. MAXIMUM, ACTIVE LENGTH = 2.5 IN.
LINER REQUIRED
LINER ID = 3.93 IN.
OPERATING TEMPERATURE
REQUIRED MOVEMENT
AXIAL DEFLECTION = 0.040 IN.
LATERAL DEFLECTION = 0.030 IN.
SHEAR FORCE TO DEFLECT BELLOWS LATERALLY =< 300 LB
CYCLE LIFE = 1000
BELLOWS MUST BE AT LEAST 2 PLY CONSTRUCTION
MATERIAL: TYPE 347 STAINLESS STEEL OR 321 STAINLESS STEEL
WORKING PRESSURE = 30.5 PSI
PROOF PRESSURE = 46 PSI
BURST PRESSURE = 76.5 PSI :
HELIUM LEAKAGE AT 30.5 PSI TO BE LESS THAN | X 10=6 ATMOSPHERIC CC/SEC

ROOM TEMPERATURE

REFERENCE: AIRESEARCH SOURCE CONTROL DRAWING 183442
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TABLE 22

BHXU 6-IN. DIA BELLOWS

e TOTAL LENGTH —ecommcmmmagen

S-43191

MATERIAL:. HASTELLOY X
MATCHING DUCT DIAMETER = 6.00 IN. 0D X 0.035 IN. WALL
TOTAL LENGTH = 5.50 IN. MAXIMUM, ACTIVE LENGTH = 4.0 IN.
LINER REQUIRED
LINER ID = 5.93 IN.
OPERATING TEMPERATURE
DESIGN LIFE = 5 YEARS
WORKING PRESSURE = 30.5 PSI
REQUIRED MOVEMENTS

AXIAL DEFLECTION = 0,250 IN.

LATERAL DEFLECTION = 0.130 IN.
SHEAR FORCE TO DEFLECT BELLOWS LATERALLY = 300 LB

(USE HIGH TEMPERATURE MODULUS OF ELASTICITY)
BELLOWS TO BE.AT LEAST 2 PLY CONSTRUCTION
ALLOWABLE STRESSES

MAXIMUM HOOP STRESS DUE TO INTERNAL PRESSURE = 10,200 PSI

MAXIMUM PRESSURE BENDING STRESS = 5,300 PSI

COMBINED STRESS DUE TO APPLIED MOVEMENTS < 80,000 PSI

(USE RT ELASTIC MODULUS)

HELIUM LEAKAGE AT 30.5 PSI TO BE LESS THAN | X 10" ATMOSPHERIC CC/SEC

1240°F

REFERENCE: AIRESEARCH SOURCE CONTROL DRAWING 183443
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TABLE 23

BELLOWS DIMENSIONS AND STRESSES

Low Pressure

Low Pressure

High Pressure

Recuperator Heat Sink Recuperator
Inlet Outlet Inlet
Nominal diameter, in. 6 4 3.5
Total length, in. 4 4 4
Convolute details:
Length, in. 3.75 1.50 I.50
Height, in. 0.46 0.3l 0.3l
Pitch, in. 0.175 0.231 0.231
No. of convolutions 22 7 7
Thickness/ply, in.® 0.010 0.006 0.006
Pressure bending stress, psi 15,100 14,400 25,700
Thermal motion stress, psi/in.| 79,500 236,000 233,000
Spring rate performance
Kaxial? 1b/in. 233 311 285
K , 1b/in. I 160 4310 3140
lateral s
Lateral force, 1b 151 130 126

#A1l bellows are two-ply

#%#BRU scroll-duct load restrictions were that lateral

loads on the turbine and

compressor scrolls would not exceed 150 and 300 lb, respectively.

AIRESEARCH MANUFACTURING COMPANY
Los Angeles, California
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The ducting between the BHXU and the BRU compressor inlet carries ambient
temperature gas. The only movements on the bellows are due to BHXU thermal
expansion from its fixed mount point to the BHXU duct outlet flange and thermal
movements of the BRU from its fixed mount point. The BHXU end of the bellows
responds rapidly while the BRU response is slow. For axial motion, the transient
component of response, 0.013 in. occurs rapidly, and this eventually builds up
to its maximum value of 0.037 in. at steady state, The iateral movement, AZ,
consists of a rapid response component of 0.023 in. and a slow component of
response that tends to reduce the net movements. Since lateral motion causes
much more stress than axial movement, the maximum condition consists of a com-
bined movement of 0.013 in. axial with 0.023 lateral. The thermal movement
directions for the 4-in. bellows are shown in Fiqure 48 and the thermal move-
ments, composed almost entirely of the slow heatup motion, are summarized in

Table 25.

The thermal motion directions for the 6-in. turbine outlet bellows are
shown in Figure 49 and the thermal motions are summarized in Table 26. The
transient response history is of great importance in establishing the net
relative movements on this bellows. The motions summarized in Table 26, com-
bined with estimates of the response behavior (Figure 40 for example), are
thenused to determine the repeating cycle conditions shown in Figure 50. The
maximum repeating cycle conditions occur during the repeating full cycle
(Figure 50) giving an axial movement of 0.13l in. and a lateral movement of
0.128 in. ~

3. Bellows Performance Analysis

a. Compressor Outlet Bellows (3-1/2 in.)

The equivalent axial movement due to combined axial and lateral movement
is obtained from the formula:

- R
6equiv = Saxial T ®jateral (z)

where R is the mean convolute radius and { is the convolution length. The

applied motions are éaxial = 0.010 in. and 6lateral = 0.023 in. The equivalent
motion is
B 2.030) .
8equiv = 0:010 * (6)(0.023) (TTEEB) = 0.197 in.

Thermal motion stress from the computer solution was found to be equal to
233,000 psi/in. of movement. Therefore, thermal motion stress for the bellows
is

§,, = 233,000 x 0.197 = 46,000 psi

th

102

AIRESEARCH MANUFACTURING COMPANY
Los Angeles, Calforma




+X

BHXU END

",Z.
-
BRU END
™~
B Ly
AYS= LATERAL
AZ = AXIAL
S-43185

Figure 47. Thermal Movement Directions for 3-1/2 in.
: Compressor Outlet Bellows

TABLE 24

THERMAL MOTION SUMMARY, 3-1/2 IN. BELLOWS

. AX, in.
BHXU end -0.046
BRU end -0.024
Net motion -0.022
2 2 172
Net lateral motion = (AX + AY")
Net axial motion = AZ = 0.010 in.
103
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-0.024
-0.018
-0.006

= 0.023 in.

Az, in.
+0.010
+0,000

+0.010



+X

BHXU END

~

+Z

AX = AXIAL

Figure 48. Thermal Movement Directions for 4-in. C
Inlet Bellows

THERMAL MOTION SUMMARY FOR 4-IN.

BHXU (rapid heatup)

BRU (slow heatup)

Steady-state net motion

@ AIRESEARCH MANUFACTURING COMPANY
Los Angeles, California

TABLE 25

AXz in.
+0.013

(due to bowing)

-0.024

+0.037 (extension)

104

AY}
AZ

= LATERAL

BRU END

S-43184

ompressor

BELLOWS
Ay, in. Az, in.
0.00 +0.023
0.00 +0.010
+0.013



+Y

+X B
AX = AXIAL
AY}_
A7)~ LATERAL
BHXU END
P
BRU END

(TO TURBINE INLET)

$-43183
Figure 49 . Thermal Movement Directions for
6-in. Turbine Outlet Bellows
TABLE 26
THERMAL MOTION SUMMARY FOR 6-IN. BELLOWS
AX, in. Ay, in..  AZ, in. Element
BHXU end rapid heatup -0.060 (bending) -0.070 -0.148 Core
BHXU end slow heatup -0.112 0 -0.036 Ducting
BRU end slow heatup -0.024 -0.010  -0.130  BRU
BRU end slow heatup +0. 103 -0.012 -0.104 Ducting

Steady-state motion -0.251 -0.048 +0.050

The maximum repeating cycle conditions are:
1/2

2 .
Lateral motion (AYZ + AZ7) = 0,128 in.

Axial motion 0.131 in,

‘ AIRESEARCH MANUFACTURING COMPANY ] 05
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0.250

0.200}

0.100f

0.150}— \\\

\\
0.050— ~
~
1 Y
AX, IN. 0 —\/ t,
E
0.050 0.131 TIM

~0.100
-0.1%0
-0.200
-0.250

0.050

AY, IN. 0
-0.050

0.100
0.050

AZ, IN. O
-0.05%0
-0.100
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: /\f : /\VM“——t
/
K-—"’—""/ 0.048 -0.010
_0 058 '0.048
0.050
- —~ -0.050 -0.128
- 44,\/‘/’ l I } /\vh >t
' Pd I 1 T —
a _ _
- P
//
B P
TIME TO MAX.
LATERAL MOTION TIME TO MAX.
LATERAL MOTION
jee— F [RST CYCLE HEAT UP~— SECOND CYCLE HEAT UP ~—t=
CREEP RELAX
TO ZERO STRESS
j—— REPEATING FULL CYC LE =t

$S-43188

Figure 50. Transient Motions Imposed on the 6-in. Bellows
During the First and Subsequent Operating Cycles
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The pressure bending stress was computed to be 25,700 psi, and this was satis-
factory when compared to the allowable of 27,500 psi.

The combined stress due to pressure and thermal motion is 25,700 + 46,000 =
71,700 psi. The plastic strain/cycle is '

o o lrotal T %%y (71,700 - 2 x 27,500
- P ; 29 x 10°
be, = 0.00057 in./in.

Using the prescribed strain concentration factor of 2.0 (equivalent to a

safety factor of four on cycle Iifel the plastic strain range is 0.00l14 in./in.
Also using the ductility constant of 0.500 and placing these numbers into the
low cycle fatigue formula

2 2
N = ( ¢ ) - (—QLQQQ—) = 192,000 cycles

Ae 0.001 14
p
this is a predicted life well in excess of the required 100 cycles.
b. Compressor Inlet (4-in. Bellows)
The applied thermal motions are §__. = 0.013 in. and § = 0.023 in.
The equivalent movement is axial - lateral
2.281 :
= + =
8eq = 0.013 (6) (0.023) (n.so ) 0.223 in.

Thermal motion stress was computed to be 236,000 psi/in. of movement. Thermal
motion stress for this bellows is

Tep = (236,000) (0.223) = 52,600 psi

The pressure bending stress was computed to be 14,400 psi which is well within
the allowable vaiue of 32,400 psi.

The combined stress due to pressure and thermal motion is I4,400‘+ 52,600 =
67,000 psi. The plastic strain range is '

_ 67,000 - (2)(32,400)
29 x 10°

Aep = 0.00008 in./in.

The computed number of cycles to failure is

N = ( 0.500

2 6
0.000!6) =9 x 10" cycles
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c. Turbine Outlet (6-in. Bellows)

The computed thermal motions are 5

a
The combined equivalent motion is lateral

xXial

3,40\

aeq =0.131 + (6)(0.I28)(3.75) = 0.827 in.

The computed thermal motion stress was 79,500 psi/in. of axial movement,
Thermal motion stress for this bellows is

Tk = 79,000 x 0.827 = 65,700 psi

This is within the 80,000 psi stress limitation. For Hastelloy C at room tem-
perature, the yield strength is 57,000 psi which indicates that the yielding
will be extremely small on successive cycles.

The computed elastic pressure bending stress was found to be 15,100 psi.
The Hastelloy C 13,000 psi stress limit for | percent creep in 50,000 hr at
1350%F indicates that the full 100°F overtemperature is not available. An
overtemperature of 70°F gives an allowable stress of 15,100 psi.

A small amount of plastic flow will occur during removal of internal
pressure and cooldown. Since thermal stresses are assumed to be at or nearly
zero, the plastic flow during cooldown is

_ (65,700-57,000)
P 28.6 x 10°

= 0.0003 in./in.

Using a strain concentration factor of 2.0 and a ductility constant of 0.48
(RT reduction of area of 40 percent), the calculated number of cyctes for
failure is

2
_[_0.48 ~
N = (0.0006) = 640,000 cycles

Cyclic fatigue is therefore not an important factor in the life of the bellows.

Mounting System

. BHXU Mount System Selection

The BHXU support system was selected to give a lightweight, reliable
arrangement consistent with overall thermal expansion requirements, operating
time-temperature history and specified inertia loadings. The initial task
performed to meet these objectives was the selection of mount point locations
on the BHXU. Additional work was carried out to select a system mounting
philosophy consistent with the loads outlined in the environmental specifi-
cation (Specification No. P1224-1). Consideration was given to two system
mounting approaches which lead to significantly different load requirements
for the BHXU bracketing; an isolation mounting system and a rigidly mounted
system. The isolation system approach assumes that elastic mounts with at

‘ AIRESEARCH MANUFACTURING COMPANY 108
Los Angeles, California

= 0.13! in. and § = 0,128 in.



least |0 percent of critical damping capacity are introduced between the
BHXU and the input source so that the shock load is reduced and resonances
within the BHXU above the isolation frequency are greatly attenuated. The
isolation system approach, therefore, results in considerably lower design
loads as compared to the hard mount system where only internal structural
damping limits resonant amplifications. A comparison of bracket sizes and
weights and resulting heat exchanger core loads was performed. The weight
comparison indicated that the isolation system is preferred and this type

of mounting was assumed for the BHXU detailed design. Further considera-
tions supporting this approach are additional weight increases in the core
required to transmit loads to the bracketry and inherent design complications
associated with welding relatively large metal components to ‘the brazed core
assembly.

A preliminary structural analysis was performed early in the study on
tasks related to mounting bracket design and location. A six=point mount
system was selected as shown in Figure 51. As discussed below, the BHXU
fixed point is at Point B on the sketch with the other five brackets having
provisions for BHXU thermal movement (in the plane of the paper).

Prospective bracket locations were limited to pan areas based on the
assumption that fin thermal stresses would be excessive for bracket side plate
locations. The bracket size required to distribute the inertia loads over
some reasonable number of fins would ensure a temperature gradient at startup
approximately equal to the core temperature increase, Bowing of the bracket
under such a temperature gradient would introduce very high fin loads.

With the assumption that the brackets would be placed at pan locations,
the following general criteria were used for the selection of bracket loca-

tions:

(a) Minimum relative thermal deflections to be accommodated by the
bellows in the hot inlet duct to the BHXU.

(b) Minimum bracket loads to achieve lightweight design.

(c) Minimum heat exchanger bending moment at the recuperator to heat
sink heat exchanger joint.

The specific results expected from this analysis were:

(a) Selection of fixed point of BHXU relative to the BRU in both the
x! and z! directions.

(b) Selection of number of brackets.

(c) Selection of bracket locations.

| AIRESEARCH MANUFACTURING COMPANY ] 09
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5 ()

A , B \ c
- BHXU FIXED POINT

BRU FIXED POINT,
"FIXED FACE OF
BRU" ON DWG.

SK 51353

Figure 51. BHXU Bracket Locations
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The results of the preliminary thermal movement analysis indicated that
the minimum hot end bellows extension would be achieved by fixing the BHXU
relative to the BRU at Point B. 1In addition, the load analysis indicates
that supports on the lines AF and CD are needed to minimize bracket loads
and BHXU bending moment at the joint between the recuperator and heat sink
heat exchanger. The results may be summarized as follows:

(a) The fixed reference in the zI axis is taken to be on the line EB.
(b) The fixed reference in the x' axis is taken to be on the ]ine ABC.
(c) The six-point mount system was selected with two brackets each on

BHXU hot pan, the BHXU - heat sink transistor plate and the heat
sink outlet pan,

2. Inertia Load Analysis

The bracket loads were calculated for a six-point mounting system using
the final detailed design dimensions. Figure 52 shows a sketch of the six-
point mounting system with the loading assumptions and a summary of dimensions,
and Figure 53 shows the load distribution in the z'-axis. The bracket loads,
Pi’ were related to the inertia forces, Fi’ by the matrix relation

AF = P

The dimensionless coefficients in the 3 by 3 matrix, A, give the geometrical
relation between the load vectors (| by 3 matrixes) F and P (units of the
components are pounds). The A matrices are tabulated for each mount in Table 27.
The applied forces, Fi’ and the bracket design loads, Pi’ are summarized in

Table 28 for the isolating mounting condition using ?n approximate total BHXU
weight of 375 1b. The BHXU coordinate system (x!, y', z!) was used in the
bracket design that follows. The spacecraft system (x, y, z) is assumed to be
in line with the BRU axis and the difference between the two coordinate systems
is less than 4 deg in any axis. Therefore, the loads shown in Table 2 are
sufficiently accurate for the bracket design.

3. Thermal Expansion Analysis

a. Mounting Plane Location

The bracket mounting plane (x!, z!) was selected so as to achieve minimum
thermal loads on the brackets due to steady state and transient thermal move-
ments normal to the plane. 1In addition the choice as to which side of the
BHXU (either side is possible from a thermal growth standpoint) the brackets
should be placed was made to (1) reduce bracket weights, (2) reduce pan rein-
forcement weights (i.e., rings) and (3) place the brackets in the lowest temper-
ature environment consistent with placement on the manifolding. For example,
the cooler hot end pan with its smaller radius pan was used and the bracket on
the transition piece achieves a very direct path to the core for the highest
loads. Figure 54 shows a layout of the heat exchanger unit with the mounting

plane and bracket attachment points.
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ASSUME :

TAKES
TAKES
TAKES
TAKES
TAKES
TAKES

LOADS
LOADS
LOADS
LOADS
LOADS
LOADS

IN X' AND Y'

IN X', Y', AND 2'

IN X' AND Y*
IN Y
IN Y' AND Z!
IN Y

S2

VIEW A

e

wou

23.35 IN.
28.42 IN.
3.85 IN.
10.00 IN.
3.80 IN.

27.15 IN.
24.62 IN.

é

Sl: Sz; 53

SIDE VIEW OF A

xl

A-32117

Figure 52, Sketch of Six Polnt Mounting System
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6.40 f————19.45 IN., —————>
IN.
[ 15.97 IN.—/* 7.45 [+
IN.
wS
v W, (RECUPERATOR) Ws (HEAT SINK) A
I
f
. .
Ry 27.15 IN - 24.62 IN. = ¢
Wy = 42.05 LB
W, = 170.58 LB
Ws = 141.02 LB
W, = 10.50 LB
Ws = 10.85 LB
a. BHXU Weight Distribution Along the ' - Axis
W
e s C"‘T
W, — 2.8 IN. | Ws 2.65 IN.
o—t 5.10 IN. 6.50 IN. @f W J__ 1.05 IN.
BRACKET PLANE, (x', z') J
b. BHXU Weight Distribution Along the 2! Axis for Loads in the Y'-Direction

A-32118

Figure 53. Loading Diagram for CG Determination
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BRACKET S

BRACKET S

BRACKET S

BRACKET S

BRACKET S

BRACKET S

2

3

4

TABLE 27

RELATION BETWEEN BRACKET LOADS AND INERTIA FORCES

=

0.

222

.052

.060

. 684

.333

. 100

.094

.040

.333

0.113

0.338

0.049

0.049

0.338

0.113
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TABLE 28

BRACKET DESIGN LOADS

Force Matrix:

F o= 375 (20 g) = 7500 1b
Fyl = 375 (20 g) = 7500 1b
F I = 375 (24 g) = 9000 1b
or.
7500
F. = l7500
9000

BRACKET LOAD MATRICES (forces in pounds)

1665
S, : P. = 1562 S,
450

705
S.: P, = 692 S
300

S.: P, = 5033 S,
4500

‘ AIRESEARCH MANUFACTURING COMPANY 115
Los Angeles, California




uorjenom] aue|d Bujjunoy

611287V

\\\||||'111

/mmoz<

WNIS L¥3H 7,

3331d NOILISNVYL

¢S SINNOW

"G 2unbi 4

‘NI 29°%2
‘NI ¢i°L2
‘NI 09
NI 672

3INVTd ONILINNOW

1l

Ao

S ANV

Vs SINNOW)

) 401y¥3dNnI3y

116

AIRESEARCH MANUFACTURING COMPANY

Los Angeles, California




. . I .
In selecting the desired x - zI plane, the distance, b,, at point 2

2)
(Figure 54) was initially established by the minimum size requirements for
brackets 52 and SS' The distance, bl’ was then calculated by minimizing the

out-of-plane thermal growth using the deflection at Point 2 relative to Points
I and 3. The deflection at Point 2 is

6, = 6

2 21 * 855 * 853

where 62! is the thermal growth at Point 2 relative to the thermal growth at

Point |, etc. The relative growths can be expressed as a function of geometry
(Figure 54), temperature difference, AT, and mean coefficient of thermal expan-
sion, @. Since the AT at point 3 is zero (80°F operations at all times), 62

is

@, AT, b, L,
+ 6, + 0 = + w,AT

22 LI + L2 272

6, = &

2 21 b,

Analysis of the BHXU heat conditions was performed and b2 was established to

give a maximum out-of-plane movement of 0.005 in. Insignificant loads would
occur in the BHXU or a mounting frame due to this movement.

b. Thermal Movement in the Plane of the Mounting Brackets

A summary of the thermal growth in the plane of mounting brackets is
shown in Table 29. Brackets located on the circular pans utilized two bolts
and both values are given. Figure 55 shows the bracket locations and hole
sizes required to allow heat exchanger movement during the heatup and cool-

down cycles. The angles shown at mounts S4 and S6 indicate the direction of

heat exchanger movement; the bolt holes are oversize at these mounts to pro-

vide free movement in the xl, zI - plane. Additional brackets (not shown)

were provided on the low pressure ducts between the BRU and BHXU to react
bellows unbalance pressure forces.

4, Bracket Analysis

The brackets for mount locations SI through S6 were designed for the 20 g

lateral and 24 g axial inertia loads. Three configurations were used, one pair
each for the recuperator high pressure outlet pan, the transition section
between the recuperator and heat sink, and the heat sink low pressure outlet
pan. FEach pair was designed for the maximum combined loading, listed in Table

28, for either of the two mount points (i.e., Sl loads for SI and 56’ etc.).

A stress analysis was performed for each configuration. and the support system
will be satisfactory for the applied.inertia loads.
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TABLE 29

THERMAL GROWTH SUMMARY AT BRACKETS (x ,z

PLANE)

Bracket

X z 28
sl (A) -0.028 -0.187 . 189
(B) -0.070 0.187 .200
S
» 0 0
s3 (A) 0.012 0.029 .03
(B) 0.012 0.029 .03
s4 (A) 0.012 0.029 .03
(B) 0.012 0.029 .03
55 0.023 0 .023
56 (A) 0.093 -0.187 .209
(B) 0.051 -0.187 194

AIRESEARCH MANUFACTURING COMPANY
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The brackets located on the circular pans (S', 56’ 53, 54) consist of a
doubler and variable cross-section torque box to transmit the bolt loads to
the core. A computer program available to AiResearch was used to analyze the
frame as several finite elements with varying section properties. The geom-
etry of the hot end (1194°F) brackets, S, and S,, is shown in Figure 56 and

the heat sink outlet pan bracket configuration (80°F operating temperature)

is shown in Figure 57. Brackets S2 and 55, located on the transition section,

are shown in Figure 58. These transition brackets, 52 and 55, operate at a

max imum temperature of 350°F.

5. External Mount System Definition

An external mounting frame is required for mounting the BHXU-BRU package
within a spacecraft or in a test facility where the design shock and vibration
spectra will be applied. The frame will be mounted on isolators to restrict
the inertia load levels in the BHXU and BRU. The specific design criteria
governing the mounting system would be consistent with the BHXU design criteria
as discussed previously. The structural analytical approach is outlined in
appendix C, including calculations relating to the design of a feasible frame
and definition of the desired isolator properties.
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Figure 56. High Pressure Outlet Pan Mounting for
Brackets S' and 56
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SECTION 5

FABRICATION

Fabrication of three heat exchanger units that met the thermodynamic,
structural, and leakage requirements of the work statement was accomplished.
To achieve the successful fabrication of the heat sink heat exchangers, a
fabrication development program was required. In this fabrication development
program, the gas-to-gas recuperators were fabricated using established state-
of-the-art procedures.

FABRICATION DEVELOPMENT

The initial fabrication procedures for the heat sink heat exchanger
were state-of-the-art techniques. The first heat sink heat exchanger cores
brazed did not meet the structural or leakage requirements. Evaluation of
the cores indicated that the header bars for the liquid passes should be modi-
fied from single-piece formed headers to multiple headers. The quality of
the braze joints also indicated that the braze cycle time was too long, allow-
ing an increase in the braze temperature that resulted in under-brazed joints,
To improve the quality of the braze joints, the outermost layers of the heat
sink heat exchanger were prebrazed as modules with a relatively short braze
cycle. The prebrazed modules were then incorporated into a heat sink heat
exchanger core which was brazed using a shortened braze cycle to ensure
satisfactory brazing.

The use of modules and the shortened braze cycle resulted in cores that
met the structural requirements but did not satisfy the leakage level re-
quired between the gas and liquid passages. To satisfy the leakage require-
ment, thicker tube sheet material was used. The 0.008-in. tube sheet mater-
ial that was used initially was changed to 0.016 in. for the modules and
0.010 in.for the remaining tube sheets. Heat sink heat exchanger No. | was
fabricated with the thicker tube plate material, but it had one leak between
a gas and liquid passages. The liquid pass that leaked was sealed off and
the core was used in BHXU No. |. The source of the leak in the heat sink
core was thought to be a local spot weld used in fabrication. Therefore,
spot welding was eliminated from the fabrication sequence. Heat sink heat
exchanger cores No. 2 and No. 3 were fabricated using the modified procedure
with no difficulties.

FABRICATION SEQUENCE

The fabrication sequence in building the Brayton cycle heat exchanger
units was to fabricate the details. and braze the cores for a BHXU. Upon com-
pletion of the cores being brazed, each was checked by performing a proof
pressure test (1.5 times working pressure) and a helium leak check. This
procedure was followed for the gas-to-gas recuperator and the gas-to-liquid
heat sink heat exchanger. The recuperators were brazed in pairs to provide
a larger base-area-to-height ratio as a means of maintaining the desired
geometry. After the initial braze and successful completion of the proof
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pressure test, the cores were subjected to a second braze where all exposed
exterior braze joints were re-alloyed.. The second braze was implemented to
ensure good filleting on all exterior joints to improve reliability in meet-
ing the long life, low leakage requirements of this hardware.

The heat sink heat exchanger was fabricated, after a period of investi-
gation, with the outermost liquid passages of each circuit prebrazed as mod-
ules. The four modules were then included in the stack up and the core
brazed, Upon completion of this braze cycle and the proof pressure test, the
heat sink heat exchanger was also subjected to an exterior alloying and braze
cycle to meet the requirements of life and leakage.

The next step in the fabrication sequence was the assembly of the two
cores, Because of the tolerance control desired on the interface locations,
a progressive buildup was used on the BHXU starting with the transition
section between the cores. After the gas manifolds were welded in place the
assembly was stress relieved and the mounting pads machined.

The final ducting was attached following the progressive trim and weld
procedure, After the ducting was complete, the entire BHXU was subjected to
a helium leak check prior to being tested.

BHXU |

In following the indicated sequence for unit |, no difficulties were
experienced with the recuperator. In fabricating the heat sink heat exchanger,
a series of design and procedure changes were required to produce the first
heat sink heat exchanger core. The core obtained for the first unit required
I of the 32 liquid sandwiches that form two liquid circuits to be sealed:soff
before reaching the desired helium leak requirements.

During the assembly of the first unit, an internal leak in the heat
sink heat exchanger developed. Several attempts to locate the passage which
contained the leak were unsuccessful.

This unit was shipped with the I15-liquid sandwich circuit helium tight
but the 16-liquid sandwich circuit was not recommended for operation.

BHXU 2

The recuperator for the second unit had been brazed simultaneously with
the recuperator for the first unit. The heat sink heat exchanger for BHXU 2
was brazed following the same procedure as the heat sink heat exchanger in
unit |. BHXU 2 proceeded through the assembly with no difficulties, was
acceptance tested, and was shipped exceeding all leakage requirements.
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BHXU 3

Two recuperator cores were brazed for BHXU 3 and based upon exterior
appearance one core was selected. The selected core was processed and no
difficulties were experienced. The heat sink heat exchanger for this unit was
fabricated in the same manner as the heat sink heat exchanger for BHXU's | and
2. No difficulties were experienced in the assembly of BHXU 3 and this unit
was shipped exceeding all leakage requirements, after being subjected to the
acceptance test,
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SECTION 6

TESTING

TEST OBJECTIVES AND PROCEDURES

Two series of tests were conducted to evaluate performance of the three
BHXU's:

(a) Performance tests of unit | to gain data relating to the effective-
ness and pressure drop characteristics of the BHXU design

(b) Acceptance tests of each of the three units delivered

Testing was conducted at the AiResearch Los Angeles facility.. The perfor-
mance test series consisted of three separate heat transfer and pressure loss
tests on BHXU I:

(a) A performance test of the recuperator at conditions simulating the
reference design point

(b) A performance test of the heat sink exchanger at conditions simula-
ting the design point

(c) A performance test of the combined heat exchanger unit at conditions
simulating the design point and at conditions simulating each of the
"off-design conditions (included for reference as Table 30).

The acceptance test series conducted on each unit included a single-unit heat
sink heat exchanger test (recuperator nonoperative) and several BHXU combined-
unit tests simulating operating points within the range of the design and off-
design conditions of Table 30. The purpose of running a separate, single-unit
test of the heat sink exchanger was to obtain a higher end-to-end temperature
difference through the unit than was possible during the combined-unit tests.
During the combined unit tests, the simulation of the recuperator operating
points resulted in a relatively low air inlet temperature to the heat sink
exchanger (in the range of 120° to 170°F). With this low inlet temperature,
the end-to-end temperature difference through the heat sink exchanger was in-
sufficient to provide accurate heat transfer data on this unit. '

Table 3} shows the performance test conditions that were specified in the
test plan and obtained with only minor variations during the actual testing.
Conditions for test I, in which only the recuperator was operative, were
established on the basis of obtaining the reference design point Reynolds
number on both sides.of the exchanger and obtaining a balance of end-section
pressure losses on both sides, as predicted by the same analysis as was used
in designing the end sections for uniform flow. The hot air inlet temperature
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was set at 730°F to avoid potential oxidation problems associated with the use
of air as the test medium. Conditions for test 2, in which only the heat sink
exchanger was operative, were established to obtain the reference design point
Reynolds number on the gas side and a Reynolds number on the cold side that was
as close to the design point Reynolds number as possible, within the require-
ment that the liquid outlet temperature should be sufficiently below the gas
inlet temperature to yield an accurate evaluation of exchanger overall thermal
conductance (UA). If the Dow Corning fluid were run at the design point
Reynolds number, the cold-side effectiveness of the heat sink exchanger would
be too high to yield an accurate measure of heat transfer performance. For
this reason, the Dow Corning fluid flow rate was increased to the point where
the heat exchanger capacity-rate ratio was of the order of one, and the cold-
side inlet temperature was decreased to 30°F to compensate partially for the
higher flow rate. The temperature of 30°F is the lowest that could be used
without incurring the possibility of ice formation on the air side.

In test 3, the test of the combined heat exchanger unit, it was impossible
to obtain the reference design point Reynolds numbers in the two heat exchangers
simultaneously. This situation occurred because of the lower recuperator tem-
peratures and the different relationship between recuperator and heat sink ex-
changer viscosities in the air test than. exist during normal operation with
xenon/helium. Thus, for the design point run, the gas flow rate was the same
as in test |, resulting in a correct simulation of recuperator performance and
an inexact simulation of heat sink exchanger performance. It was preferred to
use a correct simulation in the recuperator rather than in the heat sink ex-
changer because this results in a correct balance of the recuperator end-section
pressure losses. For the test runs simulating the unit off-design conditions,
the airflow rate was varied in proportion to the xenon/helium flow rates as
specified in Table 30.

The acceptance tests on BHXU | comprised four additional test runs within
the range of conditions of test 3 in Table 3|. The acceptance tests on BHXU's
2 and 3 included a test 2 test point with each of the I|qU|d loops active plus
several runs in the test 3 test range.

The test results using air as the heat medium at simulated test conditions
are not directly convertible to a performance prediction for XeHe at design -
conditions. However, the performance and acceptance tests were used to verify
the analytical procedures employed by AiResearch and to verify the basic heat
transfer data used in the analysis. To accomplish this verification, an ana-
lytical prediction of performance was made for each test point in Table 31
based upon the known heat exchanger configuration and the indicated test con-
ditions. The analytical procedure used was identical to that used for the
design of the BHXU, so that the comparison of predicted values using air to
test values using air could be used to establish the correlation between pre-
dicted BHXU performance for XeHe and what the actual performance would be if
the BHXU were tested with XeHe.
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TEST SETUP

Figure 59 is a schematic of the test setup indicating test equipment and
instrumentation locations. Temperature measurements were made with iron-
constantan and chromel-alumel thermocouples. Two types of temperature readout
were utilized: (1) a direct reading potentiometer, used for monitoring test
conditions and providing a data sheet record of the test points, and (2) a
stamping Brown recorder, for providing a permanent and continuous record of
test temperatures. Pressures and liquid pressure drops were measured with
gages, whereas air pressure drops were measured with water manometers. Airflow
rates were determined from pressure drop measurements across standard orifice
sections. Liquid flow rates were measured with a Cox turbine-type flowmeter,
calibrated for the Dow Corning test fluid prior to the test. Table 32 provides
a summary of the type, accuracy, and calibration of the instrumentation used.

Figure 60 is a photograph of BHXU | as instrumented and installed in the
test facility prior to testing. Figure 6| is a photograph of the same unit
after testing. These photographs are typical of all three BHXU's, although
there was some reduction in the amount of active instrumentation on BHXU's 2
and 3, AIl units were completely covered with insulation during the actual
testing., Figure 62 shows part of the instrumentation readout area of the test
stand,

TEST RESULTS

Unit | Performance Tests

The reduced data on recuperator heat transfer performance are plotted in
Figure 63. Averages of the hot- and cold-side temperature effectiveness and
airflow rates are used to obtain a single plot of effectiveness vs flow rate
for this unit, Capacity-rate ratios for the actual test points varied from 0. 944
(hot-side minimum) to 0.974 (cold-side minimum). The test points plotted in-
clude the recuperator single-unit test, the BHXU design point run, and the six
BHXU off-design points. Comparing test performance with the predicted perfor-
mance for this unit, shown by the dashed line in Figure 63, the ratio of test
UA to predicted UA varies from 83 percent at 12.5 1b/min to 90 percent at 80
Ib/min. At the simulated design flow of 41 Ib/min, test UA is 86 percent .of
predicted.

The heat sink exchanger performance is shown in Figure 64. The points
shown are the single-unit performance test, the BHXU design point test, and
the BHXU off-design test points. In plotting the test data, the average tempera-
ture effectiveness is used and the airflow rate at each test point is cor-
rected to an equivalent flow corresponding to the average of the hot- and cold=
side capacity rates. The result is a single curve of effectiveness vs flow
rate for the operating condition of equal hot and cold capacity rates. Actual
test capacity-rate ratios for the BHXU tests varied from 0.90 to 0.99 (cold-
side minimum in all cases). In the single-unit heat sink exchanger test, the
cold-side capacity rate was 83 percent of the hot-side capacity rate. The
single-unit performance test is considered to be the most reliable of the test
points because it involved the highest temperature differential between inlet
fluids (301°F) and is therefore least sensitive to thermocouple errors. For
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Figure 60. BHXU | Before Testing
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Figure 61.
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the combined BHXU tests, the temperature difference between inlet fluids

varied from 92°F at 12.5 1b/min airflow to [45°F at 80 lb/min. Resultant
errors range from about |.l to 0.7 percentage points in effectiveness per
degree Fahrenheit error in a fluid temperaturel measurement. With the possible
exception of the test point at 17.5 1b/min, the data scatter shown in Figure 64
can be fully accounted for by instrumentation accuracy.

Comparing test performance with predicted performance for the heat sink
exchanger, the ratio of test UA to predicted UA varies from 65 percent at 12.5
Ib/min airflow to 74 percent at 80 lb/min. At the simulated design point of
49 1b/min, the test UA is 70 percent of predicted. It should be noted that
these tests were conducted with one (of a total of 16) of the liquid passages
blocked off to prevent leakage from that passage.

Air pressure drop data for the unit are shown in Figure 65. These data
are static pressure differentials corrected for differences in velocity head
between inlet and outlet ducts to give change in total pressure through the
unit (flange to flange). At the BHXU simulated design point, the high-pres-
sure side pressure drop is |Il percent of predicted and the low-pressure side
pressure drop is 86 percent of predicted. The new estimate of XeHe pressure
drops based on these test results is shown by the dashed lines in Figure 65.

At the heat sink exchanger simulated design point, the Dow Corning pres-
sure drop was 12.3 psi, which may be compared with a predicted value of 6.2

psi.

The degree of flow maldistribution in the recuperator is shown by the
readings from the thermocouple array in the low-pressure side transition sec-
tion between recuperator and heat sink exchanger. Fiqure 66 shows the tempera-
ture map at this location for the BHXU simulated design point run. Each
thermocouple in the array was positioned in the center of a gas flow area
approximately 1.9 in. wide by 5 in. high. Comparing the averages of the tem-
perature readings at each horizontal position, it appears that the recuperator
end sections were providing good flow distribution in the recuperator flow
width direction, since the average temperatures in the outer areas are both
148°F. The average temperatures at the vertical locations show a trend of
increasing temperature with height, which is indicative of higher low-pressure
side mass velocities at the top of the recuperator than at the bottom. This
result is consistent with an expected momentum recovery at the top of the low-
pressure inlet manifold because the inlet manifold, for manufacturing and
structural reasons, does not taper to zero flow area at the top as would be
required for perfect flow distribution. :

Unit | Acceptance Tests

Results of the acceptance tests on unit | are shown in Figures 67 through
69. It can be seen that the results of these tests verify the performance
curves established by the performance tests. As in the case of the performance
tests, the heat transfer results for the heat sink exchanger show a great deal
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Figure 65. Gas Side Pressure Drop, Performance Test Results, BHXU |
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of scatter, this being attr ibutable to the small end-to-end AT across the unit
and the resultant sensitivity of the effectiveness measurements to thermocouple
errors,

Liquid pressure drop is not directly verified by the acceptance tests
because the new liquid pressure drop prediction was established by the results
of the individual heat sink exchanger test rather than the combined BHXU tests.
The individual test was used because this test more closely approximates the
end-to-end AT encountered during heat sink exchanger operation with XeHe.
Liquid pressure drops measured during the acceptance tests, however, were close
to the pressure drops measured in the combined BHXU performance tests which
were about 30 percent above design prediction.

Unit 2 Acceptance Tests

A total of seven test points were run, including two BHXU simulated
design point runs, three off-design runs, and two heat sink exchanger single-
unit tests (one with each Dow Corning loop active). The data on recuperator
heat transfer performance are shown in Figure 70 and compared with the effec-
tiveness curve obtained from the BHXU | performance test series. The test
data are seen to verify the previously obtained performance curve within the
limits of instrumentation accuracy.

The data on heat sink exchanger heat transfer performance are shown in
Figure 71. Also shown in the figure are the effectiveness curve obtained from
the BHXU | performance test series and the curve based on the original design
prediction of effectiveness for this unit. This unit performs much better
than unit |, which had one of 16 liquid-side flow passages blocked. The curve
drawn in the figure as the best interpretation of the test data is not the
best fit of all the data points, because more importance is attached to the
single-unit test points than to the BHXU combined-unit points. The single-unit
tests involved a higher temperature differential between inlet fluids and .
therefore resulted in a more accurate determination of temperature effectiveness
than is available from the combined-unit tests.

Comparing test performance with predicted performance for the unit 2 heat
sink exchanger, the ratio of test UA to predicted UA varies from 92 percent at
12.5 1b/min airflow to 94 percent at 80 lb/min. At the simulated design point
of 49 1b/min, the test UA is 93 percent of predicted. '

Air pressure drop data for BHXU 2 are shown in Figure 72 and compared
with the pressure drop prediction based on the BHXU | performance tests. The
high-pressure side pressure drops are slightly below predicted and the low-
pressure side pressure drops are slightly above predicted.

Dow Corning fluid pressure drops in the single-unit heat sink exchangef
tests were about 75 percent of the pressure drop measured during the single-
unit performance test of BHXU I.
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RECUPERATOR AVERAGE EFFECTIVENESS

.96

.94

.92

.90

.88

.86

.84

.82

.80

PERFORMANCE TEST RESULTS ON BHXU |

QO ACCEPTANCE TEST POINTS

10 20 30 40 50 60 70 80
AVERAGE AIRFLOW RATE, LB/MIN $-45122
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Unit 3 Acceptance Tests

Six test points were run, including four BHXU combined-unit runs and two
heat sink exchanger single-unit tests (one with each Dow Corning loop active).
The data on recuperator heat transfer performance are shown in Figure 73. The
test data verify the previously obtained performance curve within the limits
of instrumentation accuracy. The test point at 55 Ib/min showed the poorest
heat balance (4.4 percent discrepancy between hot and cold stream heat rates)
and is therefore considered to be the least accurate of the test points.

The data on heat sink exchanger heat transfer performance are shown in
Figure 74 and compared with the effectiveness curve obtained from the BHXU 2
acceptance test series. The latter curve represents a good interpretation of
the BHXU 3 test data because of the greater importance attached to the single-
unit test points than to the BHXU combined-unit points, as explained previously.

Air pressure drop data for BHXU 3 are shown in Figure 75. 1In comparison
with the predicted pressure loss curves (based on the BHXU | performance tests),
the high-pressure side pressure drops are slightly below prelicted and the low-
pressure side pressure drops are slightly above predicted.

Dow Corning fluid pressure drops in the single-unit heat sink exchanger
tests were about 65 percent of the pressure drop measured during the single-
unit performance test of BHXU 1I.

BHXU PERFORMANCE WITH XE=-HE

, Based on the results of the performance tests, a new performance map for
BHXU operation with XeHe was established. The estimated performance for

BHXU | is shown in Table 33 for the design point and six off-design operating
conditions. The test results on the recuperator indicate that the actual UA
will be 86 percent of the analytically predicted design UA. Applying this
factor to the predicted UA at the XeHe design point, the recuperator effec-
tiveness is reduced from the design objective of 95 percent to 94.! percent.
Similarly, the heat sink exchanger UA is reduced to 70 percent of the original
design prediction, resulting in a new heat sink exchanger effectiveness of
92.0 percent. This performance for the heat sink exchanger applies when the
active liquid circuit is the one in which one of the 16 liquid-side flow pas-
sages is blocked. 1In estimating off-design effectivenesses for the two units,
the ratio of actual to predicted UA is assumed to vary with XeHe flow rate in
the same manner as actual to predicted UA was found to vary with airflow rate
in the performance tests. The heat sink exchanger effectiveness is based on
a constant capacity-rate ratio of 0.87.

To estimate XeHe pressure drops for unit |, the ratios of test to pre-
dicted air pressure drops at the BHXU simulated design point were applied to
the predicted XeHe pressure drops at the BHXU design point with XeHe. Off-

design pressure drops were determined by drawing the GAPT curves for XeHe

parallel to the OAPT curves for air. This is possible because the air and
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TABLE 33

BHXU | PERFORMANCE WITH XE-HE 83.8

Gas Liquid
Pressure | Pressure
Recuperator HSHX Drop, Drop,
Condition Effectiveness Effectiveness® percent psi
Design 0.941 0.920 3.9 . 6.0
0ff-design
I 0.955 0.95 7.5 .3
I1 0.955 0.945 6.3 2.0
111 0.95 0.94 5.3 3.0
Iv 0.945 0.93 4.8 4.3
v 0.935 0.915 3.9 7.1
VI 0.92 0.89 3.0 13.4

*Based on a capacity-rate ratio of 0.87

XeHe curves extend over essentially the same Reynolds number range and should
therefore have the same slope of pressure drop vs flow rate. The estimated
GAPT curves for XeHe are shown by the dashed lines in Figure 65.

Based on the performance test results, predicted Dow Corning fluid pres-
sure drops for unit | for the design and off-design conditions were increased
by a factor of 2 from the original design predictions.

The acceptance tests indicated that BHXU's 2 and 3 have the same perfor-
mance as BHXU |, with the exception that the heat sink exchanger in units 2
and 3 has a higher effectiveness and lower pressure drop than the heat sink
exchanger in unit |. The estimated performance with XeHe for units 2 and 3
is shown in Table 34. The heat sink exchanger performance at the design con-
dition is based on a UA equal to 93 percent of the original design prediction.

The off-design effectivenesses are based on a UA variation with flow rate assumed
to be the same as the variation of test UA with airflow in the acceptance tests.

Estimated liquid pressure drops for units 2 and 3, based on the unit 2
acceptance tests, are increased by 50 percent from the original design pre-
dictions. This may be considered to be slightly conservative for unit 3,
since the acceptance test results for this unit indicated about a 30 percent
increase in liquid pressure drop over the original prediction.
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TABLE 34

BHXU'S 2 AND 3 PERFORMANCE WITH XE-HE 83.8

Gas Liquid
Pressure Pressure
: Recuperator HSHX Drop, ' Drop,
Condition Effectiveness Effectiveness® percent psi
Design 0.941 0.946 3.9 4.5
Off Design
I 0.955 0.965 7.5 1.0
11 0.955 0.965 6.3 1.5
II1 0.950 0.96 5.3 2.3
Iv 0,945 0.955 4.8 3.2
v 0.935 0.94 3.9 5.3
VI 0.92 0.92 3.0 10.1
*Based on a capacity-rate ratio'of 0.87.
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APPENDIX A

AIRESEARCH HEAT EXCHANGER COMPUTER PROGRAMS

A brief description of several computer programs which AiResearch utilized
in conducting the preliminary design study is presented below.

GAS-TO-LIQUID, MULTIPASS- CROSSFLOW PLATE-FIN HEAT EXCHANGER DESIGN PROGRAM
(PLATE-FIN 5)

Plate-fin 5 is used to design crossflow or cross-counterflow plate-fin
heat exchangers, with singie or multipass construction on either the hot or
the cold side, and with mixing of the fluids between passes and no mixing of
the fluids within each pass. Calculations are made from separate f and f/j
Lagrangian interpolation tables for each fin as functions of Reynolds number
when the required performance, fluid properties, fin information, and heat
exchanger details are given. An iterative procedure is required. Core dimen-
sions and weights are calculated. The basic surfaces can be scaled to other
geometricalily similar surfaces.

Perfect gas behavior is assumed for the gas side, and all properties are
evaluated at the bulk average temperature on each side. Gas density for fric-
tion pressure drop is the reciprocal of the average specific volume. Each side
of the heat exchanger is designed separately, and then the sides are combined
together. Thermodynamically impossible problems and core and duct gas Mach
numbers are checked. Duct and core end losses are included as fixed multiples
of the pertinent velocity head. Return pan pressure drops are neglected. Fin
effectiveness is determined by iteration.

Required performance parameters in the input include gas and liquid weight
flows, gas inlet total temperature, pressure and total-to-total pressure drop,
liquid inlet temperature, and the heat transfer rate. Liquid pressure drop is
not a design requirement for the heat exchanger, but it is calculated for each
solution.

Required fin and heat exchanger information includes material, thicknesses,
number of cross-counterflow passes, and duct diameters. The gas- and liquid-
side fins are specified for the heat transfer surface combination to be inves-
tigated. Different heat exchangers are then calculated, with the specified
fin surfaces, from all combinations of the input values of thermal conductance
ratio and the number of liquid passages (tubes). The user of the program then
picks the best solution for this problem on the basis of factors such as weight,
dimensions, practicability, and liquid pressure drop.

'COUNTERFLOW PLATE-FIN HEAT EXCHANGER DESIGN PROGRAM (PLATE-FIN 78)
Plate-fin 7B designs pure counterflow heat exchanger cores. The effect of

the inlet and outlet crossflow sections, which are necessary to distribute the
gas flows into and out of the counterflow section, on the size and performance
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of the unit is not calculated. Since these end sections are not considered,
the shape of the gas face has no effect on the size of the effective heat
transfer core. As a result, the dimensions of the core are not used to guide
the program "search" for fin surface combinations yielding minimum-weight
cores. Instead, the user can specify a dimension of the gas face (height or
width) or its aspect ratio, and the program will calculate the dimensions and
weight of the resulting heat exchanger. A separate operational program cal-
culates pressure drop and weight of the end sections.

In counterflow, the designer loses a degree of freedom. Since the flow
widths and lengths must be equal for the two sides of the heat exchanger, all
the available pressure drop will be utilized only in the controlling side of
the heat exchanger, if the program is restricted to the use of production fin
surfaces arranged in practical configurations for manufacture. Normally, the
gas side will be controlling. Therefore, after the heat exchanger is sized,
the pressure drop actually used on the other side of the heat exchanger is
calculated.

COUNTERFLOW PLATE-FIN END SECTION PRESSURE DROPS (H 1400)

The preceding description of AiResearch computer program plate-fin 7B
describes the design procedure used for pure counterflow plate-fin heat
exchangers. This description further states that no allowance is made for
the pressure drop, weight, and volume required for the introduction and
removal of the fluids from the counterflow core. In order to determine the
effect of the end sections required for this purpose on the performance of
the heat exchanger, Program H 1400 was written.

As in counterflow heat exchangers the flow face area is common to both
fluids; simple manifolds are not sufficient to accomplish the fluid distri-
bution. Two prime design concepts are available to accomplish the required
flow distribution: triangular and rectangular end sections. Where the
pressure drop available is low, the triangular-shaped ends are generally
preferred, but if pressure drop is not limited, then the rectangular design
may be preferred. For both design concepts, the ends are fabricated as an
integral part of the heat transfer matrix. The plates used throughout cover
the entire flow passage areas, but the fins used in the end sections need
not necessarily have the same configuration as the fins in the counterflow
core. Only the fin height must be maintained throughout. In most cases,
as the temperature differences in the ends are small and as the flow is
almost entirely crossflow, the heat transfer in these sections is negligible
(or is assumed negligible to give extra "safety margin" to the design).

Program input required includes counterfiow core geometry, inlet and
outlet fluid conditions, and the overall configurations of the end sections
to be considered. For each specified end section configuration, all end
section pressure losses are calculated. When these are added to the pressure
drops of plate-fin 7B, realistic overall heat exchanger pressure losses are
achieved.
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MULTIPASS TUBULAR HEAT EXCHANGER DESIGN PROGRAM (H 0424)

In this program multipass cross-counterflow and multipass cross-parallel-
flow, tubular two-fluid heat exchangers are designed by an iteration procedure.
Any combination of liquids and gases can be utilized. As in the plate-fin pro-
grams, the friction factor and Colburn modulus data for both inside and outside
tubes are available in the form of Lagrangian tables. The outside of the tubes
can either be plain or have circular disc fins or continuous-strip fins. The
inside of the tubes can be plain, have turbulators, have internal fins, or be
dimpled. A wide range of friction factor and Colburn modulus data is available
for all these types of surfaces. The majority of the data used is actual test
data obtained in tests conducted by AiResearch.

Input parameters required include heat transfer rate, inlet and outlet
temperatures and pressures, and the weight flow rates of the fluids. Fluid
properties are evaluated at average film temperature. Allowances for shock
and turning losses are made as specified multiples of the core velocity pres-
sure., Momentum pressure losses are calculated. Gas density is usually cal-
culated on the basis of the perfect gas law, but compressibility factors (Z)
can also be utilized, although in the subject study compressibility effects
are not significant.

Multipassing can be accomplished either inside or outside of the tubes.
Surface input information required includes the tube and fin diameters, the
number of fins, the number of passes, all material thicknesses and the overall
flow configuration. Options are available as to the type of overall heat
exchanger configuration required. The dimensions, volume, and weight of a
rectangular tube bundle are calculated but in addition to this, there is the
option of arranging the tube bundle in a large annulus.

MULTIPASS CROSS-COUNTERFLOW TUBULAR PERFORMANCE (H 0415)

This program calculates pressure drops, thermal conductances, effective-
ness, and outlet temperatures for any two single-phase fluids or for a single-
phase fluid and condensing fluid. Manifold and tube-bundle pressure drops are
separately calculated. Friction factor and Colburn modulus vs Reynolds number
tables are available for many geometries. Input fluid properties, available
for many fluids, are specific heat, dynamic viscosity, compressibility factor,
Colburn modulus, and fluid properties are the same as for the tubular design
program H 0424.

Heat exchanger geometry inputs are
(a) Number of passages and multipassing fluid
(b) Tube 0.D., wall thickness, and thermal conductivity
(c) Tube=bundle dimensions and number of tubes

(d) Turbulator thickness and thermal conductivity
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(e) Fin thickness, 0.D., number per inch, and thermal conductivity

(f) Tube spacing and arrangement (center-to-center spacing in two direc-
tions, staggered or in-line arrangement)

(g) Manifold area and 90 deg-turn loss coefficient
Operating condition inputs are

(a) Margins for UA and both pressure drops

(b) Inlet temperature for both fluids

(c) Inlet or outlet pressure for both fluids

(d) Flow rate for both fluids

Fluid properties, except for the specific heats in the heat balance, are
evaluated at a film temperature which is the arithmetic average between the
mean wall temperature and the mean fluid bulk temperature. Core fluid velocity
is evaluated at the bulk average temperature. Allowance for inside and outside
tube entrance and exit losses is made as specified multiples of core velocity
head. Momentum pressure losses are calculated. Manifold pressure drop is
based on local density in each manifold.
Assumptions include

(a) Flow is completely mixed between passes and unmixed within a pass.

(b) UA per unit volume and specific heat are constant throughout the
heat exchanger.

(c) Boundaries are adiabatic.
(d) Flow distribution is uniform.

(e) No heat leak will result due to conduction.or radiation,

-

MULTIPASS CROSSFLOW PLATE-FIN TRANSIENT PERFORMANCE PREDICTION PROGRAM (HXTI!)
The potential uses of this program are the following:

(a) Determination of steady-state operating points including the effects
of axial heat conduction in the exchanger core.

(b) Determination of thermal stresses in the core due to rapid changes
in inlet flow rates and temperatures.

(c) Prediction of the transient response of plate-fin exchangers, with
the capability of including the program in system transient programs.
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Heat exchanger configuration may be crossflow, cross-counterflow, or cross-
parallel flow. The number of passes in the heat exchanger core is essentially
unlimited; the present program storage limit is I5.

The program will allow fluid mixing in return pans or streamline turning;
fluids are assumed unmixed in the core. Fluids may be either liquids or gases.

The normal output includes several tables giving input and calculated data
on the core and quantities used in the computation. This is-followed by tabled
output of the computation results including fluid inlet and outlet temperatures,
flow, pressures, etc. vs time. 1In addition, as optional output, any or all fluid
and metal temperatures within the core can be obtained.

The program uses forward (or explicit) finite difference technique. In
its present form, the exchanger can be divided into 900 total nodes. However,
it is expected that approximately 50 to 60 nodes will give excellent results
for most exchanger configurations.

The program considers both longitudinal and lateral heat conduction in
the core; optionally, one may disregard such conduction by the appropriate
setting of an input index.

Heat transfer coefficients and fluid properties are determined at each
time step at average fluid temperatures; optionally, fluid properties and heat-
transfer coefficients may be allowed to vary with temperature by computing such
quantities at each node, at each time step. This is urider the control of an
input data index.

Time step data, as determined by numerical stability criteria, are automati-
cally calculated by the program. The user of the program need not be concerned

with what time value should be used as the program will normally use the largest
time value which is stable. If a smaller time value is desired for greater
accuracy, the program will accept such data from input. The program will also

automatically adjust the size of the finite difference elements if those read
in are too large.

Boundary data may be read in in the form of single values for those
variables which are constant with time or as tables vs time for those quantities
which are functions of time.

Initial-condition temperatures (of the core and both fluids) may be com-
pletely filled in by the program user, or from a minimum amount of input data
(one value); the program will cyclically fill in all required initial tempera-
ture data.

Velocity profiles of both fluids are normally uniform; optionally, either
or both fluids may have non-uniform velocity profiles. This is handled by
either a velocity profile equation of general form which is built into the
program and for which the user must read in coefficients, or velocity profiles
data may be entered by tables.

The thermal capacitance of heat exchanger side bars can be considered.
Fluids, of course, may be gases or liquids.
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APPENDIX B

AXIAL CONDUCTION IN COUNTERFLOW HEAT EXCHANGERS

In all heat transfer devices, temperature gradients exist in the structure
of the device. In any material where such a temperature gradient exists, there
is a flow of heat from the high temperature portion of the structure towards
the low temperature section. In many heat transfer devices, this leakage of
heat through the heat exchanger material is very small and is generally ignored
in the design of heat exchangers. 1In heat exchangers where high effectiveness
is required, it is generally necessary to use some form of pure counterflow
device,and the temperature gradient that exists in the material structure is at
a maximum value, as the hot end of the heat exchanger is essentially at maximum
fluid temperature and the low end is at minimum fluid temperature. The flow of
heat through the metal in this type of situation results in a loss of heat from
the hot end and addition of heat to the cold end, both of which have adverse
effects on heat exchanger performance. In order to compensate for the reduced
temperature difference at both ends of the heat exchanger, the heat exchanger
size must be increased.

To determine exactly the necessary increase in heat exchanger size to
account for the effects of axial conduction, it is necessary to conduct an
energy balance over the entire heat exchanger, and a rigorous mathematical
analysis is required to permit the accurate evaluation of these effects. Papers
by H. W. Hahnemann (Reference |) and by G. D. Bahnke and C. P. Howard (Reference
2) presented two methods of analysis. Both papers are sufficiently general to
permit their adaption to the specific problem of axial conduction in a pure
counterflow plate-fin heat exchanger. In addition to considering the informa-
tion presented in these references, AiResearch has conducted an analysis to
obtain a simple closed-form solution to the problem. This analysis is presented
below.

TI’ T2 temperature of hot,
cold fluid
Ty Tw wall temperature of surface
separating hot and cold
0 ‘ fluids
W
daT _ c ., C specific heat of hot, cold
T, =0 Ta ax x=L =0 PI" P2 g
dx
x=0 hs h, film heat transfer coef-
Ta0 - ficient on hot, cold side
} wl, w2 flow rate of hot, cold
x=0 x=L : fluid
e
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L heat exchanger length

Am metal area available for heat conduction in direction of
flow '

(hA)I(hA)2 heat transfer conductance on hot, cold side

k metal thermal conductivity

The conditions of steady state, constant specific heats, and constant film
heat transfer coefficient were assumed. Also, the thermal resistance of the
metal surface separating the hot and cold fluids was assumed to be negligible
compared to that of the fluid films. In other words, aTw/By = 0. The problem
thus becomes one-dimensional.

For a differential length Ax of the heat exchanger, energy balance equa-
tions may be written for the hot and cold fluids and for the surface separating
them. By allowing Dx = O, one obtains the differential equations of tempera-
ure distributions:

ar, -1) = 9T
| W —_—
dx
B(r_-T1) = 9
w 2 -
dx
2
d°T
D(Tw - T2) - c(TI - Tw) = w
2
dx
where A = (hA)l
WC L
| pl
B = (hA)z
wchzL
cC = (hA)n
KA L
m
D = (hA)z
KA L
m
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By introducing dTw/dx = u, the above equations are changed into four first-order

differential equations. This is, in matrix notation

{T'} = [ {T}

-
o )
Tl
o |
\ W J
o ¢ -D (D +¢)
0 A 0 -A
and |M =
0 0 -B B
| 0o 0 o

Seeking solutions of the form

1 _ X
Ty = %K} ¢

leads to the characteristic equation

U [“3 - (A-B)uz-‘(AB+D+C)|J+AD-BC]= 0

If Mys Hs» and M, are the nonzero, real and distinct roots of the expression in

brackets above, then the solution of the differential equations is

H - =KI + I, HoX 4 K3} H3* 4 K, eHaX
( .
M
) A
where {Ki }= )\ﬁA T H
| B
B + My
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The coefficients xi are determined from the equations that result from

the substitution of the boundary conditions into the solution above. Hahnemann
(Reference I) carried this through and then proceeded to find an explicit expres-
sion for the heat exchanger temperature effectiveness, His results are rather
lengthy and, therefore, will not be repeated here. However, it must be pointed
out that when the characteristic equation has multiple roots, the solution above
must be modified according to well-established rules. Multiple roots occur, for
instance,when A/B = C/D or when A = B and C = D.

The heat exchanger temperature effectiveness was found for the case when

A = = i = = = H

Band C =D, that is, when W, cpI W, cpz wcp and (hA)| (hA)z. It is
(Ncm + 1)

E=l - s N )

m
Where Cm =T we
p
(UA)
N = NTU = we
p
¢ L |exl o=
2p l - p | +p
i
P NC
o = cosh 2Np - |
" sinh 2Np

If thermal conductivity is negligible, the above equation for effective-
ness reduces to the familiar equation

wWhen Cm - w, the effectiveness equation becomes

}JimE =1 - |
C - cosh 2N - |
m” sinh 2N !
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and when N - «, the effectiveness equation is in the limit

Cm
lim E = 1~ =T+

N - m

If in the above equations, N~ « and Cm - =, E - |/2 as expected.

The effectiveness equation discussed above was verified by comparison with
results obtained by G. D. Bahnke and C. P. Howard (Reference 2). Bahnke and
Howard used a numerical finite-difference method to calculate the effectiveness
of a periodic flow (rotary) type heat exchanger when heat conduction in the
direction of flow is allowed for. Their case of "infinite rotor speed" is equi-
valent to a direct transfer type counterflow heat exchanger. The verified
effectiveness equation was used in the design of all pure counterflow heat
exchangers determined during the parametric design study,
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APPENDIX C

EXTERNAL MOUNTING SYSTEM

PROPOSED MOUNTING APPROACH

In the detailed BHXU design, it was assumed that the BHXU and BRU compon-
ents would be mounted on a common frame. The frame must therefore be compat-
ible with the BHXU-BRU bellows design and provide for a load transmission path
for shock and vibration inputs. The frame will in turn be attached to the ve-
hicle with isolators that are intended to limit resonance vibrations within
the frame and BHXU-BRU package which could lead to amplifications exceeding
the design capability of the BHXU or BRU (including their attachment bracket
systems). The frame and BHXU-BRU structure acting as a rigid body on the
isolator system will therefore have natural frequencies which will be control-
led to known-acceleration levels. The inertia loads at isolator resonance
should be the maximum loads on the system. AiResearch recommends the follow-
ing criteria as guidelines for achieving the desired system.

(a) A frame will attach to the BHXU-BRU at || mount points which provide
for internal thermal expansion and pressure load restraint.

(b) The frame will be attached to the vehicle through four isolators.

(c) The maximum natural frequency of the frame BHXU-BRU structure acting
as a rigid body on the isolators will be approximately 25 Hz.

(d) The frame BHXU-BRU structure will have no internal natural frequencfes_
less than approximately 50 Hz.

Three examples of suitable mounting approaches are shown in Figure 76,
The final selection of a suitable frame will depend on several factors includ-
ing the location of the BHXU-BRU package, or packages, within the vehicle, the
location of suitable vehicle structure to support the loads and the desired
accessibility of the BHXU-BRU for repairs or refurbishment. The integral
frame shown in Figure 76a utilizes the least space for the system although
removable struts (members) would be required if the frame were to be permanent
whereas the BXHU or BRU were removable. The external frame shown in Figure 76b
could be used to set the BHXU-BRU away from the vehicle structure or to provide
convenient removal from the frame. Basically, there is no difference between
the two approaches and a combination of the two is likely in a detailed design
solution. The common frame in Figure 76c could be utilized to support a pair
of BHXU-BRU packages. The isolator placement would probably be restricted to
peripheral locations to permit removal of either BHXU-BRU package. The frame
supports may be placed on the four sides rather than as shown to be closer to
the central BHXU-BRU mounts which carry the highest loads.
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a. Single-BHXU Package, Integral Frame
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b. Single-BHXU Package, External Frame
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c. Two-BHXU Package, Common External Frame

Figure 76, Typical BHXU Package Mounting Systems
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STRUCTURAL ANALYSIS
A detailed structural analysis of the component mount system involves an
iterative process for any assumed vehicle load pickup points. If optional

load points are available on the vehicle structure, the process must be per=
formed for each case to provide a comparison of the relative advantages and

disadvantages. The following steps illustrate a typical design procedure.
(a) Select approach and preliminary structure
(b) Estimate load paths and loads

(c) Select preliminary frame and isolator geometry to handle the loads

(d) Perform preliminary sizing of the frame, calculate its contribution
to loading

(e) Perform preliminary isolator design, accurately define frequencies
and deflections

(f) Detail the frame design
(g) Perform final isolator design
LOAD SPECIFICATION

The inertia load specification outlined above for the BHXU design and

will be the same for the combined frame, BHXU and BRU. The inertia load inputs
combined with the frame, BHXU and BRU weights and the isolator properties will
determine the overall loading of the system and the loads applied to the vehicle

support points.

SCHEMATIC OF BHXU-BRU MOUNT SYSTEM LOAD POINTS AND LOADING DIRECTIONS

Figure 77 shows the spatial relationship between the six BHXU mount
brackets, the three BRU mount points, and the two duct pickup points for re=-
acting bellows axial pressure load. Force vectors are indicated to show the
approximate manner in which the BHXU-BRU loads will be transmitted to the frame.

FRAME FEASIBILITY

A preliminary analysis of a typical frame structure was performed to show
that the approach is feasible. It was estimated that a 75-1b frame spanning
50 in. between isolators would support the BHXU-BRU. A total frame and com-
ponent weight of 750 Ib was assumed.

A plane frame was checked to obtain an estimate of member cross-sectional
areas. One-half of the estimated package weight, amplified by a 20-g factor,
was applied on a 50-in. span with the resulting load picture shown on.

the following page.
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- For this estimate, the maximum member load is 0.84 P yielding an applied load of
of
F = 0.84(20)(375) = 6300 1b

Assuming an allowable stress of 125,000 psi for a typical medium strength
structural steel, the required member cross-sectional area is

F 6300 .2
A = = = . .
Oal 125,000 0.05 in

A 25-in. steel member with this area would have a total weight of about 3.6 1b
so that the above 7 member frame would weigh about 25 1b. Two plane frames
plus cross members would have a total of 75 Ib.

Member buckling was checked to illustrate another design consideration
for a supporting frame. The critical buckling load is given by

P = KEI/L®
C

For a simply supported 25-in. member, the required I for a 6300-1b load with
a |.5 safety factor is
2
. PR 7 6300(1.5) (50)% _ 6087 in b
= KE = s ~ 0. 87 in.
9.87(28) 10

~

Therefore the ratio of required section moment of inertia to the required
area is

I/A == = 1.7
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@ FIXED POINTS WITH RESPECT TO SUPPORT FRAME
QO PROVISIONS FOR THERMAL MOVEMENT WITH RESPECT TO FRAME

S| THRU S6, BHXU MOUNTS
SPI AND SP3, DUCT PRESSURE REACTION MOUNTS y'

BRI THRU BR3, BRU MOUNTS

4

!
y =\
~ 7 T
2
t, o »

™~ o5

Figure 77. BHXU-BRU Support Mounts and Load Dlrections
(Refer to Figure 46 for Component Arrangement)
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A rectangle has an I/A ratio of

a2 bhiie e
bh 12

so that a height of 4.52 in. and a width of 0.012 in. would be approximately
adequate, although this strip would not be stable. An I-beam with a flange
separation, h, and flange areas, A/2, would have an approximate I/A ratio of
(B)e)
2\ 1\ 2
1A = —22/ b
A 4

Therefore flange separation would be 2.6l in. An I-beam of this height would
have flanges of about 1.0 in. width; hence, nominal web and flange thickness
would be about 0.0Il in. The webs and flanges would be checked for local
buckling instability. Generally, this analysis indicates that the frame
members will be sized by buckling considerations. Although in a detailied
design member lengths can be adjusted to minimize the effect of buckling on
frame weight.

The frame members would have natural frequencies above 50 Hz. In addition,
one-half the weight of the BHXU-BRU applied to center span would give a rigid

body natural frequency of 55 Hz, Taking the latter case, for example, the
frame spring rate for a central load assuming simple support and conditions
is

k = 48EI

L3

The moment of inertia for two members with areas of 0.05 sq in. and a 15-in.
separation is

1= 2(.05)(%?)2 _ 5.6 in.”

6 :
For an elastic modulus of 28 x 10 and a 50-in. span, the spring constant is

k = 48(28 x |06)(5.6) = 60,000 in.-1b
(50)°

2
The natural frequency of a 175-1b weight (about 0.5 lb-sec /in. mass) is

f= L [k
2m ym
f = 120,000 = 55 Hz

i

Frame strength was therefore adequate to ensure that internal frequencies
less than 50 Hz will not occur.
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ISOLATOR DESIGN CONSIDERATIONS

A standard isolator design would be anticipated for this system. The
operating temperatures would probably require use of the metal mesh type
rather than rubber or other non-metallic materials. Metal mesh designs to
1200°F are common and this frame may operate at lower temperatures. The
damping coefficient and isolator spring rate will be specified to ensure
that maximum loads of 20-g lateral and 24-g vertical are achieved.

A damping coefficient equal to 10 percent of critical damp will be required
for vibratory inputs and the desired shock isolation factor is 0.5.
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